On differential systems with quadratic impulses and their applications to Lagrangian mechanics

Alberto Bressan, Franco Rampazzo

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

This paper is concerned with the basis dynamics and a class of variational problems for control systems of the form (E) dx/dt = f(t,x,u)+g(t,x,u) du/dt + h(t,x,u) (du/dt)2. These systems have impulsive character, due to the presence of the time derivative du/dt of the control. It is shown that trajectories can be well defined when the controls u are limits (in a suitable weak sense) of sequences (un) contained in the Sobolev space W1,2. Roughly speaking, one can say that, in this case, the qqn tend to the square root of a measure. Actually, this paper shows that the system (E) is essentially equivalent to an (affine) impulsive system of the form dx/dt = f(x)+g(x)v+h(x) dw/dt, where v ε L2 and dw/dt is a nonnegative Radon measure not smaller than v2. This provides a characterization of the closure of the set of trajectories of (E), as the controls u range inside a fixed ball of W1,2. The existence of (generalized) optimal controls for variational problems of Mayer type is also investigated. Since the main motivation for studying systems of form (E) comes from Rational Mechanics, this paper concludes by presenting an example of an impulsive Lagrangian system.

Original languageEnglish (US)
Pages (from-to)1205-1220
Number of pages16
JournalSIAM Journal on Control and Optimization
Volume31
Issue number5
DOIs
StatePublished - 1993

All Science Journal Classification (ASJC) codes

  • Control and Optimization
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'On differential systems with quadratic impulses and their applications to Lagrangian mechanics'. Together they form a unique fingerprint.

Cite this