ON FEDERATED LEARNING WITH ENERGY HARVESTING CLIENTS

Cong Shen, Jing Yang, Jie Xu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Catering to the proliferation of Internet of Things devices and distributed machine learning at the edge, we propose an energy harvesting federated learning (EHFL) framework in this paper. The introduction of EH implies that a client's availability to participate in any FL round cannot be guaranteed, which complicates the theoretical analysis. We derive novel convergence bounds that capture the impact of time-varying device availabilities due to the random EH characteristics of the participating clients, for both parallel and local stochastic gradient descent (SGD) with non-convex loss functions. The results suggest that having a uniform client scheduling that maximizes the minimum number of clients throughout the FL process is desirable, which is further corroborated by the numerical experiments using a real-world FL task and a state-of-the-art EH scheduler.

Original languageEnglish (US)
Title of host publication2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8657-8661
Number of pages5
ISBN (Electronic)9781665405409
DOIs
StatePublished - 2022
Event47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
Duration: May 23 2022May 27 2022

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2022-May
ISSN (Print)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
Country/TerritorySingapore
CityVirtual, Online
Period5/23/225/27/22

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'ON FEDERATED LEARNING WITH ENERGY HARVESTING CLIENTS'. Together they form a unique fingerprint.

Cite this