Abstract
As introduced by F. Harary in 1994, a graph G is said to be an integral sum graph if its vertices can be given a labeling f with distinct integers so that for any two distinct vertices u and v of G, uv is an edge of G if and only if f(u)+f(v) = f(w) for some vertex w in G. We prove that every integral sum graph with a saturated vertex, except the complete graph K3, has edge-chromatic number equal to its maximum degree. (A vertex of a graph G is said to be saturated if it is adjacent to every other vertex of G.) Some direct corollaries are also presented.
Original language | English (US) |
---|---|
Pages (from-to) | 669-674 |
Number of pages | 6 |
Journal | Czechoslovak Mathematical Journal |
Volume | 60 |
Issue number | 3 |
DOIs | |
State | Published - 2010 |
All Science Journal Classification (ASJC) codes
- General Mathematics