On Multi-query Local Community Detection

Yuchen Bian, Yaowei Yan, Wei Cheng, Wei Wang, Dongsheng Luo, Xiang Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

25 Scopus citations

Abstract

Local community detection, which aims to find a target community containing a set of query nodes, has recently drawn intense research interest. The existing local community detection methods usually assume all query nodes are from the same community and only find a single target community. This is a strict requirement and does not allow much flexibility. In many real-world applications, however, we may not have any prior knowledge about the community memberships of the query nodes, and different query nodes may be from different communities. To address this limitation of the existing methods, we propose a novel memory-based random walk method, MRW, that can simultaneously identify multiple target local communities to which the query nodes belong. In MRW, each query node is associated with a random walker. Different from commonly used memoryless random walk models, MRW records the entire visiting history of each walker. The visiting histories of walkers can help unravel whether they are from the same community or not. Intuitively, walkers with similar visiting histories are more likely to be in the same community. Moreover, MRW allows walkers with similar visiting histories to reinforce each other so that they can better capture the community structure instead of being biased to the query nodes. We provide rigorous theoretical foundation for the proposed method and develop efficient algorithms to identify multiple target local communities simultaneously. Comprehensive experimental evaluations on a variety of real-world datasets demonstrate the effectiveness and efficiency of the proposed method.

Original languageEnglish (US)
Title of host publication2018 IEEE International Conference on Data Mining, ICDM 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages9-18
Number of pages10
ISBN (Electronic)9781538691588
DOIs
StatePublished - Dec 27 2018
Event18th IEEE International Conference on Data Mining, ICDM 2018 - Singapore, Singapore
Duration: Nov 17 2018Nov 20 2018

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
Volume2018-November
ISSN (Print)1550-4786

Conference

Conference18th IEEE International Conference on Data Mining, ICDM 2018
Country/TerritorySingapore
CitySingapore
Period11/17/1811/20/18

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'On Multi-query Local Community Detection'. Together they form a unique fingerprint.

Cite this