TY - GEN
T1 - On Multi-query Local Community Detection
AU - Bian, Yuchen
AU - Yan, Yaowei
AU - Cheng, Wei
AU - Wang, Wei
AU - Luo, Dongsheng
AU - Zhang, Xiang
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/12/27
Y1 - 2018/12/27
N2 - Local community detection, which aims to find a target community containing a set of query nodes, has recently drawn intense research interest. The existing local community detection methods usually assume all query nodes are from the same community and only find a single target community. This is a strict requirement and does not allow much flexibility. In many real-world applications, however, we may not have any prior knowledge about the community memberships of the query nodes, and different query nodes may be from different communities. To address this limitation of the existing methods, we propose a novel memory-based random walk method, MRW, that can simultaneously identify multiple target local communities to which the query nodes belong. In MRW, each query node is associated with a random walker. Different from commonly used memoryless random walk models, MRW records the entire visiting history of each walker. The visiting histories of walkers can help unravel whether they are from the same community or not. Intuitively, walkers with similar visiting histories are more likely to be in the same community. Moreover, MRW allows walkers with similar visiting histories to reinforce each other so that they can better capture the community structure instead of being biased to the query nodes. We provide rigorous theoretical foundation for the proposed method and develop efficient algorithms to identify multiple target local communities simultaneously. Comprehensive experimental evaluations on a variety of real-world datasets demonstrate the effectiveness and efficiency of the proposed method.
AB - Local community detection, which aims to find a target community containing a set of query nodes, has recently drawn intense research interest. The existing local community detection methods usually assume all query nodes are from the same community and only find a single target community. This is a strict requirement and does not allow much flexibility. In many real-world applications, however, we may not have any prior knowledge about the community memberships of the query nodes, and different query nodes may be from different communities. To address this limitation of the existing methods, we propose a novel memory-based random walk method, MRW, that can simultaneously identify multiple target local communities to which the query nodes belong. In MRW, each query node is associated with a random walker. Different from commonly used memoryless random walk models, MRW records the entire visiting history of each walker. The visiting histories of walkers can help unravel whether they are from the same community or not. Intuitively, walkers with similar visiting histories are more likely to be in the same community. Moreover, MRW allows walkers with similar visiting histories to reinforce each other so that they can better capture the community structure instead of being biased to the query nodes. We provide rigorous theoretical foundation for the proposed method and develop efficient algorithms to identify multiple target local communities simultaneously. Comprehensive experimental evaluations on a variety of real-world datasets demonstrate the effectiveness and efficiency of the proposed method.
UR - http://www.scopus.com/inward/record.url?scp=85061356186&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85061356186&partnerID=8YFLogxK
U2 - 10.1109/ICDM.2018.00016
DO - 10.1109/ICDM.2018.00016
M3 - Conference contribution
AN - SCOPUS:85061356186
T3 - Proceedings - IEEE International Conference on Data Mining, ICDM
SP - 9
EP - 18
BT - 2018 IEEE International Conference on Data Mining, ICDM 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE International Conference on Data Mining, ICDM 2018
Y2 - 17 November 2018 through 20 November 2018
ER -