On poroelastic inclusions and its applications in reservoir mechanics

H. Bedayat, A. Dahi Taleghani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Geological structures in the subsurface ranging from fractures to reservoirs can be simplified as ellipsoidal inhomogeneities. For instance, one can model a reservoir as an inclusion by considering possibly different material properties and different fluid pressure in comparison to the surrounding rock. Hence, the stresses and displacements associated with the fluid withdrawal from or fluid injection into the formations can be determined by assuming no hydraulic communication between the inclusion and the surrounding medium. The lack of hydraulic communication could be the result of a cap rock or an impermeable seal/fault. On other hand, in the case of fractures, this assumption in not valid anymore and the hydraulic communication between the inclusion and medium should be considered in the calculations. This paper provides analytical solutions for deformation and stress distribution inside and outside of poroelastic ellipsoidal inclusions. Eshelby theory with the Biot theory of poroelasticity are combined to model the change in stress caused by changes in pore pressure or temperature inside the inclusions. Using the provided analytical solutions, we explore the effect of inclusion size, material properties and pressure/temperature condition. The results confirm that neglecting hydraulic communication between the inclusion and the sounding matrix may result in lower inclusion volume change ratio associated with mode (1) and higher inclusion volume change ratio associated with mode (2).

Original languageEnglish (US)
Title of host publication49th US Rock Mechanics / Geomechanics Symposium 2015
PublisherAmerican Rock Mechanics Association (ARMA)
Pages703-708
Number of pages6
ISBN (Electronic)9781510810518
StatePublished - 2015
Event49th US Rock Mechanics / Geomechanics Symposium - San Francisco, United States
Duration: Jun 29 2015Jul 1 2015

Publication series

Name49th US Rock Mechanics / Geomechanics Symposium 2015
Volume1

Other

Other49th US Rock Mechanics / Geomechanics Symposium
Country/TerritoryUnited States
CitySan Francisco
Period6/29/157/1/15

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'On poroelastic inclusions and its applications in reservoir mechanics'. Together they form a unique fingerprint.

Cite this