TY - GEN
T1 - On poroelastic inclusions and its applications in reservoir mechanics
AU - Bedayat, H.
AU - Dahi Taleghani, A.
N1 - Publisher Copyright:
Copyright 2015 ARMA, American Rock Mechanics Association.
PY - 2015
Y1 - 2015
N2 - Geological structures in the subsurface ranging from fractures to reservoirs can be simplified as ellipsoidal inhomogeneities. For instance, one can model a reservoir as an inclusion by considering possibly different material properties and different fluid pressure in comparison to the surrounding rock. Hence, the stresses and displacements associated with the fluid withdrawal from or fluid injection into the formations can be determined by assuming no hydraulic communication between the inclusion and the surrounding medium. The lack of hydraulic communication could be the result of a cap rock or an impermeable seal/fault. On other hand, in the case of fractures, this assumption in not valid anymore and the hydraulic communication between the inclusion and medium should be considered in the calculations. This paper provides analytical solutions for deformation and stress distribution inside and outside of poroelastic ellipsoidal inclusions. Eshelby theory with the Biot theory of poroelasticity are combined to model the change in stress caused by changes in pore pressure or temperature inside the inclusions. Using the provided analytical solutions, we explore the effect of inclusion size, material properties and pressure/temperature condition. The results confirm that neglecting hydraulic communication between the inclusion and the sounding matrix may result in lower inclusion volume change ratio associated with mode (1) and higher inclusion volume change ratio associated with mode (2).
AB - Geological structures in the subsurface ranging from fractures to reservoirs can be simplified as ellipsoidal inhomogeneities. For instance, one can model a reservoir as an inclusion by considering possibly different material properties and different fluid pressure in comparison to the surrounding rock. Hence, the stresses and displacements associated with the fluid withdrawal from or fluid injection into the formations can be determined by assuming no hydraulic communication between the inclusion and the surrounding medium. The lack of hydraulic communication could be the result of a cap rock or an impermeable seal/fault. On other hand, in the case of fractures, this assumption in not valid anymore and the hydraulic communication between the inclusion and medium should be considered in the calculations. This paper provides analytical solutions for deformation and stress distribution inside and outside of poroelastic ellipsoidal inclusions. Eshelby theory with the Biot theory of poroelasticity are combined to model the change in stress caused by changes in pore pressure or temperature inside the inclusions. Using the provided analytical solutions, we explore the effect of inclusion size, material properties and pressure/temperature condition. The results confirm that neglecting hydraulic communication between the inclusion and the sounding matrix may result in lower inclusion volume change ratio associated with mode (1) and higher inclusion volume change ratio associated with mode (2).
UR - http://www.scopus.com/inward/record.url?scp=84964956051&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964956051&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84964956051
T3 - 49th US Rock Mechanics / Geomechanics Symposium 2015
SP - 703
EP - 708
BT - 49th US Rock Mechanics / Geomechanics Symposium 2015
PB - American Rock Mechanics Association (ARMA)
T2 - 49th US Rock Mechanics / Geomechanics Symposium
Y2 - 29 June 2015 through 1 July 2015
ER -