TY - GEN
T1 - On secure signaling for the Gaussian multiple access wire-tap channel
AU - Tekin, Ender
AU - Şerbetli, Semih
AU - Yener, Aylin
PY - 2005
Y1 - 2005
N2 - We consider the Gaussian Multiple Access Wire-Tap Channel (GMAC-WT) where multiple users communicate with the intended receiver in the presence of an intelligent and informed wire-tapper (eavesdropper). The wire-tapper receives a degraded version of the signal at the receiver. We assume that the wire-tapper is as capable as the intended receiver, and there is no other shared secret key. We consider two different secure communication scenarios: (i) keeping the wire-tapper totally ignorant of the message of any group of users even if the remaining users are compromised, (ii) using the secrecy of the other users to ensure secrecy for a group of users. We first derive the outer bounds for the secure rate region. Next, using Gaussian codebooks, we show the achievability of a secure rate region for each measure in which the wire-tapper is kept perfectly ignorant of the messages. We also find the power allocations that yield the maximum sum rate, and show that upper bound on the secure sum rate can be achieved by a TDMA scheme. We present numerical results showing the new rate region and compare it with that of the Gaussian Multiple-Access Channel (GMAC) with no secrecy constraints.
AB - We consider the Gaussian Multiple Access Wire-Tap Channel (GMAC-WT) where multiple users communicate with the intended receiver in the presence of an intelligent and informed wire-tapper (eavesdropper). The wire-tapper receives a degraded version of the signal at the receiver. We assume that the wire-tapper is as capable as the intended receiver, and there is no other shared secret key. We consider two different secure communication scenarios: (i) keeping the wire-tapper totally ignorant of the message of any group of users even if the remaining users are compromised, (ii) using the secrecy of the other users to ensure secrecy for a group of users. We first derive the outer bounds for the secure rate region. Next, using Gaussian codebooks, we show the achievability of a secure rate region for each measure in which the wire-tapper is kept perfectly ignorant of the messages. We also find the power allocations that yield the maximum sum rate, and show that upper bound on the secure sum rate can be achieved by a TDMA scheme. We present numerical results showing the new rate region and compare it with that of the Gaussian Multiple-Access Channel (GMAC) with no secrecy constraints.
UR - http://www.scopus.com/inward/record.url?scp=33847609636&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33847609636&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:33847609636
SN - 1424401313
SN - 9781424401314
T3 - Conference Record - Asilomar Conference on Signals, Systems and Computers
SP - 1747
EP - 1751
BT - Conference Record of The Thirty-Ninth Asilomar Conference on Signals, Systems and Computers
T2 - 39th Asilomar Conference on Signals, Systems and Computers
Y2 - 28 October 2005 through 1 November 2005
ER -