On the compressible bidirectional vortex

Brian A. Maicke, Joseph Majdalani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

The purpose of this paper is to develop a theoretical solution that describes the compressible bidirectional vortex. Similar studies by the authors have extended the Taylor and Culick profiles to incorporate the effects of compressibility in porous channels and tubes. Our study is prompted by the need to better understand the flow behavior at high speed in swirl-driven thrust chambers in which a reversing cyclonic motion is established. Such chambers have the advantage of promoting mixing, efficiency, and internal wall cooling. This is accomplished by confining combustion to an inner vortex tube that remains separated from the chamber walls by an outer stream of swirling, low temperature oxidizer. Our closed-form analytical solution is based on steady, rotational, axisymmetric, compressible, and inviscid flow conditions. It is constructed using a Rayleigh-Janzen expansion in the injection Mach number. At the outset, the compressible axial and radial velocities are captured along with the mantle movement at various Mach numbers and vortex Reynolds numbers. In view of the underlying assumption of axisymmetry, all properties are held constant about the chamber axis. We find that, so long as this condition is maintained, the swirl velocity remains invariant in the tangential direction.

Original languageEnglish (US)
Title of host publication44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781563479434
DOIs
StatePublished - 2008

Publication series

Name44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Control and Systems Engineering
  • Space and Planetary Science
  • General Energy
  • Electrical and Electronic Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'On the compressible bidirectional vortex'. Together they form a unique fingerprint.

Cite this