On the controllability of Lagrangian systems by active constraints

Alberto Bressan, Zipeng Wang

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

We consider a mechanical system which is controlled by means of moving constraints. Namely, we assume that some of the coordinates can be directly assigned as functions of time by implementing frictionless constraints. This leads to a system of ODE's whose right hand side depends quadratically on the time derivative of the control. In this paper we introduce a simplified dynamics, described by a differential inclusion. We prove that every trajectory of the differential inclusion can be uniformly approximated by a trajectory of the original system, on a sufficiently large time interval, starting at rest. Under a somewhat stronger assumption, we show this second trajectory reaches exactly the same terminal point.

Original languageEnglish (US)
Pages (from-to)543-563
Number of pages21
JournalJournal of Differential Equations
Volume247
Issue number2
DOIs
StatePublished - Jul 15 2009

All Science Journal Classification (ASJC) codes

  • Analysis
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'On the controllability of Lagrangian systems by active constraints'. Together they form a unique fingerprint.

Cite this