On the fly prediction of th-dependent spatial macroscopic cross-sections using FFT

S. Terlizzi, D. Kotlyar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Monte Carlo (MC) codes can accurately model neutron transport in nuclear reactors. However, the efficient inclusion of thermal-hydraulic (TH) feedback within the MC calculation sequence is still an open problem, particularly when burnup's time-evolution must be included in the analysis. For this reason, deterministic codes, leveraging the use of macroscopic cross-sections generated with higher order methods from 2D lattice calculations, are still widely used to perform reduced-order multiphysics analyses. However, traditional cross-sections generation procedures typically decompose the large core problem into multiple assembly-level problems; thus not having the ability to capture inter-nodal effects. Moreover, the pre-generation procedure requires additional pre-computational time to perturb/branch the problem for various operational conditions (e.g. fuel temperature), which, again, is decoupled from the core. In this paper, we propose a new method leveraging the use of Fourier transfer functions to predict the cross-sections distribution due to a variation in TH conditions. The method was tested against a 3D BWR unit-cell problem with realistic density profile and axial fuel heterogeneity. The method was able to compute the mono-energetic cross-sections distribution with maximum error lower than 2%. Insights on the influence of the statistics used to generate the cross-sections on the accuracy of the results is also provided.

Original languageEnglish (US)
Title of host publicationInternational Conference on Physics of Reactors
Subtitle of host publicationTransition to a Scalable Nuclear Future, PHYSOR 2020
EditorsMarat Margulis, Partrick Blaise
PublisherEDP Sciences - Web of Conferences
Pages402-409
Number of pages8
ISBN (Electronic)9781713827245
DOIs
StatePublished - 2020
Event2020 International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020 - Cambridge, United Kingdom
Duration: Mar 28 2020Apr 2 2020

Publication series

NameInternational Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020
Volume2020-March

Conference

Conference2020 International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020
Country/TerritoryUnited Kingdom
CityCambridge
Period3/28/204/2/20

All Science Journal Classification (ASJC) codes

  • Nuclear Energy and Engineering
  • Safety, Risk, Reliability and Quality
  • Nuclear and High Energy Physics
  • Radiation

Fingerprint

Dive into the research topics of 'On the fly prediction of th-dependent spatial macroscopic cross-sections using FFT'. Together they form a unique fingerprint.

Cite this