Abstract
In this paper, we study the generalization properties of online learning based stochastic methods for supervised learning problems where the loss function is dependent on more than one training sample (e.g., metric learning, ranking). We present a generic decoupling technique that enables us to provide Rademacher complexity-based generalization error bounds. Our bounds are in general tighter than those obtained by Wang et al. (2012) for the same problem. Using our decoupling technique, we are further able to obtain fast convergence rates for strongly convex pairwise loss functions. We are also able to analyze a class of memory efficient online learning algorithms for pairwise learning problems that use only a bounded subset of past training samples to update the hypothesis at each step. Finally, in order to complement our generalization bounds, we propose a novel memory efficient online learning algorithm for higher order learning problems with bounded regret guarantees.
Original language | English (US) |
---|---|
Pages | 1478-1486 |
Number of pages | 9 |
State | Published - 2013 |
Event | 30th International Conference on Machine Learning, ICML 2013 - Atlanta, GA, United States Duration: Jun 16 2013 → Jun 21 2013 |
Other
Other | 30th International Conference on Machine Learning, ICML 2013 |
---|---|
Country/Territory | United States |
City | Atlanta, GA |
Period | 6/16/13 → 6/21/13 |
All Science Journal Classification (ASJC) codes
- Human-Computer Interaction
- Sociology and Political Science