Abstract
Let {K(s,t): 0≦s≦1, t≧0} be a Kiefer process. Let {Mathematical expression} denote the occupation distribution. Using the ideas of Mogul'skii, Donsker and Varadhan, the limit behavior of Lt is studied. These and strong approximation results are then used to derive LIL in Chung's form for various functions of empirical processes.
Original language | English (US) |
---|---|
Pages (from-to) | 73-81 |
Number of pages | 9 |
Journal | Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete |
Volume | 65 |
Issue number | 1 |
DOIs | |
State | Published - Mar 1983 |
All Science Journal Classification (ASJC) codes
- Analysis
- Statistics and Probability
- General Mathematics