On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

HAWC Collaboration

Research output: Contribution to journalConference articlepeer-review

Abstract

Observations of high energy gamma rays are an essential probe of the cosmic-ray acceleration mechanisms because they are created by cosmic rays interacting near their origin. The characteristics of the gamma-ray flux variability and spectra constrain the acceleration mechanisms and the environment of the accelerator. Detection of the highest energy gamma rays and the shortest timescales of variability are key considerations when designing the next generation of gamma-ray experiments. Instruments with a wide field of view and large duty cycle are capable of continuously surveying the very high energy gamma-ray sky, mapping the diffuse emission, detecting emission from very extended regions, and observing transient events such as gamma-ray bursts. They also have the potential for discovering electromagnetic counterparts to gravitational waves and astrophysical neutrinos. I will present the scientific motivation for a next-generation water-Cherenkov observatory located at very high altitude in South America.

Original languageEnglish (US)
JournalProceedings of Science
StatePublished - 2017
Event35th International Cosmic Ray Conference, ICRC 2017 - Bexco, Busan, Korea, Republic of
Duration: Jul 10 2017Jul 20 2017

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere'. Together they form a unique fingerprint.

Cite this