On vibration control using a bistable snap through absorber from a force balance perspective

David R. Johnson, R. L. Harne, K. W. Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

One approach to vibration control is to apply a force to a primary structure which opposes excitation, effectively canceling the external disturbance. A familiar passive example of this approach is the linear tuned mass absorber. In this spirit, the utility of a bistable attachment for attenuating vibrations, especially in terms of the high-orbit, snap through dynamic, is investigated using the harmonic balance method and experiments. Analyses demonstrate the fundamental harmonic snap through dynamic, having commensurate frequency with the single-frequency harmonic excitation, may yield displacements either substantially in-phase or out-of-phase with the primary structure. During in-phase snap through, forces are generated by the bistable oscillator which reinforce the applied loading, resulting in dramatic amplification of primary system response. During out-of-phase snap through, forces are generated which are only partially opposed to the input, leading to a measure of host structure attenuation. The experiments verify the analytical findings and also uncover nonlinear dynamics not predicted by the analysis that have slightly favorable vibration suppression performance when compared with the out-of-phase, fundamental harmonic snap through action.

Original languageEnglish (US)
Title of host publication22nd Reliability, Stress Analysis, and Failure Prevention Conference; 25th Conference on Mechanical Vibration and Noise
PublisherAmerican Society of Mechanical Engineers
ISBN (Print)9780791855997
DOIs
StatePublished - 2013
EventASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013 - Portland, OR, United States
Duration: Aug 4 2013Aug 7 2013

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume8

Other

OtherASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013
Country/TerritoryUnited States
CityPortland, OR
Period8/4/138/7/13

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'On vibration control using a bistable snap through absorber from a force balance perspective'. Together they form a unique fingerprint.

Cite this