TY - JOUR
T1 - Online Improvement of Condition-Based Maintenance Policy via Monte Carlo Tree Search
AU - Hoffman, Michael
AU - Song, Eunhye
AU - Brundage, Michael P.
AU - Kumara, Soundar
N1 - Publisher Copyright:
© 2004-2012 IEEE.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - Often in manufacturing systems, scenarios arise where the demand for maintenance exceeds the capacity of maintenance resources. This results in the problem of allocating the limited resources among machines competing for them. This maintenance scheduling problem can be formulated as a Markov decision process (MDP) with the goal of finding the optimal dynamic maintenance action given the current system state. However, as the system becomes more complex, solving an MDP suffers from the curse of dimensionality. To overcome this issue, we propose a two-stage approach that first optimizes a static condition-based maintenance (CBM) policy using a genetic algorithm (GA) and then improves the policy online via Monte Carlo tree search (MCTS). The static policy significantly reduces the state space of the online problem by allowing us to ignore machines that are not sufficiently degraded. Furthermore, we formulate MCTS to seek a maintenance schedule that maximizes the long-term production volume of the system to reconcile the conflict between maintenance and production objectives. We demonstrate that the resulting online policy is an improvement over the static CBM policy found by GA. Note to Practitioners - This article proposes a method of scheduling maintenance in complex manufacturing systems in scenarios where there is frequent competition for maintenance resources. We use a condition-based maintenance policy that prescribes maintenance actions based on a machine's current health. However, when several machines are due for maintenance, a maintenance technician must choose between multiple competing jobs. While a common approach is to establish rules that dictate how maintenance jobs should be prioritized, such as the first-in, first-out rule, the goal of this work is to improve upon static policies in real time. We do this by strategically evaluating sequences of maintenance actions and playing out many 'what-if' scenarios to see how the system will behave in the future. Implementation of the proposed method relies on the construction of a simulation model of the target system. This model is capable of retrieving the current state of the physical system, including the degradation state of machines, the availability of maintenance resources, and the distribution of parts throughout buffers in the system. We present several simulation experiments that demonstrate the improvement in system performance that our approach provides. Future work will aim to improve the efficiency of maintenance prioritization through online learning as well as more accurately identify manufacturing system configurations that will yield the greatest benefit of these methods.
AB - Often in manufacturing systems, scenarios arise where the demand for maintenance exceeds the capacity of maintenance resources. This results in the problem of allocating the limited resources among machines competing for them. This maintenance scheduling problem can be formulated as a Markov decision process (MDP) with the goal of finding the optimal dynamic maintenance action given the current system state. However, as the system becomes more complex, solving an MDP suffers from the curse of dimensionality. To overcome this issue, we propose a two-stage approach that first optimizes a static condition-based maintenance (CBM) policy using a genetic algorithm (GA) and then improves the policy online via Monte Carlo tree search (MCTS). The static policy significantly reduces the state space of the online problem by allowing us to ignore machines that are not sufficiently degraded. Furthermore, we formulate MCTS to seek a maintenance schedule that maximizes the long-term production volume of the system to reconcile the conflict between maintenance and production objectives. We demonstrate that the resulting online policy is an improvement over the static CBM policy found by GA. Note to Practitioners - This article proposes a method of scheduling maintenance in complex manufacturing systems in scenarios where there is frequent competition for maintenance resources. We use a condition-based maintenance policy that prescribes maintenance actions based on a machine's current health. However, when several machines are due for maintenance, a maintenance technician must choose between multiple competing jobs. While a common approach is to establish rules that dictate how maintenance jobs should be prioritized, such as the first-in, first-out rule, the goal of this work is to improve upon static policies in real time. We do this by strategically evaluating sequences of maintenance actions and playing out many 'what-if' scenarios to see how the system will behave in the future. Implementation of the proposed method relies on the construction of a simulation model of the target system. This model is capable of retrieving the current state of the physical system, including the degradation state of machines, the availability of maintenance resources, and the distribution of parts throughout buffers in the system. We present several simulation experiments that demonstrate the improvement in system performance that our approach provides. Future work will aim to improve the efficiency of maintenance prioritization through online learning as well as more accurately identify manufacturing system configurations that will yield the greatest benefit of these methods.
UR - http://www.scopus.com/inward/record.url?scp=85113247743&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85113247743&partnerID=8YFLogxK
U2 - 10.1109/TASE.2021.3088603
DO - 10.1109/TASE.2021.3088603
M3 - Article
AN - SCOPUS:85113247743
SN - 1545-5955
VL - 19
SP - 2540
EP - 2551
JO - IEEE Transactions on Automation Science and Engineering
JF - IEEE Transactions on Automation Science and Engineering
IS - 3
ER -