Online structured meta-learning

Huaxiu Yao, Yingbo Zhou, Mehrdad Mahdavi, Zhenhui Li, Richard Socher, Caiming Xiong

Research output: Contribution to journalConference articlepeer-review

13 Scopus citations


Learning quickly is of great importance for machine intelligence deployed in online platforms. With the capability of transferring knowledge from learned tasks, meta-learning has shown its effectiveness in online scenarios by continuously updating the model with the learned prior. However, current online meta-learning algorithms are limited to learn a globally-shared meta-learner, which may lead to sub-optimal results when the tasks contain heterogeneous information that are distinct by nature and difficult to share. We overcome this limitation by proposing an online structured meta-learning (OSML) framework. Inspired by the knowledge organization of human and hierarchical feature representation, OSML explicitly disentangles the meta-learner as a meta-hierarchical graph with different knowledge blocks. When a new task is encountered, it constructs a meta-knowledge pathway by either utilizing the most relevant knowledge blocks or exploring new blocks. Through the meta-knowledge pathway, the model is able to quickly adapt to the new task. In addition, new knowledge is further incorporated into the selected blocks. Experiments on three datasets demonstrate the effectiveness and interpretability of our proposed framework in the context of both homogeneous and heterogeneous tasks.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
StatePublished - 2020
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: Dec 6 2020Dec 12 2020

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Online structured meta-learning'. Together they form a unique fingerprint.

Cite this