Abstract
In addition to neuromodulation, endogenous opioid peptides serve as growth factors. To determine involvement of opioids in the homeostatic renewal and repair of the corneal epithelium, epithelial outgrowths from 3-mm explants of rabbit cornea were investigated. Blockade of opioid-receptor interaction by the potent opioid antagonist naltrexone (NTX) for 7 days significantly increased the extent of outgrowths and the number and labeling index (DNA synthesis) of epithelial cells, relative to control levels. Outgrowths exposed to the opioid growth factor (OGF) [Met5]enkephalin for 7 days were subnormal in extent and labeling index and displayed alterations in architectural pattern. The effects of OGF on epithelial outgrowth were blocked by concomitant exposure to the opioid antagonist naloxone; naloxone alone had no effect on growth at the concentration utilized. NTX and OGF were active in both serum-containing and serum-free cultures. Immunocytochemical investigations showed that both OGF and its opioid receptor zeta (ζ) were present in epithelial cells growing in control media. The results indicate that an endogenous opioid peptide and its receptor are present in mammalian corneal epithelium and serve to modulate cell proliferation, migration, and organization.
Original language | English (US) |
---|---|
Pages (from-to) | R942-R950 |
Journal | American Journal of Physiology - Regulatory Integrative and Comparative Physiology |
Volume | 268 |
Issue number | 4 37-4 |
DOIs | |
State | Published - 1995 |
All Science Journal Classification (ASJC) codes
- Physiology
- Physiology (medical)