Optical genome mapping in acute myeloid leukemia: a multicenter evaluation

Brynn Levy, Linda B. Baughn, Yassmine Akkari, Scott Chartrand, Brandon LaBarge, David Claxton, P. Alan Lennon, Claudia Cujar, Ravindra Kolhe, Kate Kroeger, Beth Pitel, Nikhil Sahajpal, Malini Sathanoori, George Vlad, Lijun Zhang, Min Fang, Rashmi Kanagal-Shamanna, James R. Broach

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Detection of hallmark genomic aberrations in acute myeloid leukemia (AML) is essential for diagnostic subtyping, prognosis, and patient management. However, cytogenetic/ cytogenomic techniques used to identify those aberrations, such as karyotyping, fluorescence in situ hybridization (FISH), or chromosomal microarray analysis (CMA), are limited by the need for skilled personnel as well as significant time, cost, and labor. Optical genome mapping (OGM) provides a single, cost-effective assay with a significantly higher resolution than karyotyping and with a comprehensive genome-wide analysis comparable with CMA and the added unique ability to detect balanced structural variants (SVs). Here, we report in a real-world setting the performance ofOGMin a cohort of 100 AML cases that were previously characterized by karyotype alone or karyotype and FISH or CMA.OGMidentified all clinically relevant SVs and copy number variants (CNVs) reported by these standard cytogenetic methods when representative clones were present in >5% allelic fraction. Importantly, OGM identified clinically relevant information in 13% of cases that had been missed by the routine methods. Three cases reported with normal karyotypes were shown to have cryptic translocations involving gene fusions. In 4% of cases, OGM findings would have altered recommended clinical management, and in an additional 8% of cases, OGM would have rendered the cases potentially eligible for clinical trials. The results from this multiinstitutional study indicate that OGM effectively recovers clinically relevant SVs and CNVs found by standard-of-care methods and reveals additional SVs that are not reported. Furthermore, OGM minimizes the need for labor-intensive multiple cytogenetic tests while concomitantly maximizing diagnostic detection through a standardized workflow.

Original languageEnglish (US)
Pages (from-to)1297-1307
Number of pages11
JournalBlood Advances
Issue number7
StatePublished - Aug 11 2023

All Science Journal Classification (ASJC) codes

  • Hematology

Cite this