TY - GEN
T1 - Optimal energy management for energy harvesting transmitters under battery usage constraint
AU - Wu, Xianwen
AU - Yang, Jing
AU - Wu, Jingxian
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/8/10
Y1 - 2016/8/10
N2 - This paper takes the impact of charging and discharging operations on battery degradation into consideration, and studies the optimal energy management policy for an energy harvesting communication system under a battery usage constraint. Specifically, in each time slot, we assume the harvested energy can be used to power the transmitter immediately without entering into the battery, or stored into the battery for now and retrieved later for transmission. Whenever the battery is charged or discharged, a cost will be incurred to account for its impact on battery degradation. We impose an long-term average cost constraint on the battery, which is translated to the average number of charge/discharge operations per unit time. The objective is to develop an online policy to maximize the long-term average throughput of the transmitter under energy causality constraint and the battery usage constraint. We first relax the energy causality constraint on the system, and impose an energy flow conservation constraint instead. We show that the optimal energy management policy has a double-threshold structure: if the amount of energy arrives in each time slot lies in between the two thresholds, it will be used immediately without involving the battery; otherwise, the battery will be charged or discharged accordingly to maintain a constant transmit power. We then modify the double-threshold policy slightly to accommodate the energy causality constraint, and analyze its long-term performance. We show that the system achieves the same long-term average performance, thus it is optimal.
AB - This paper takes the impact of charging and discharging operations on battery degradation into consideration, and studies the optimal energy management policy for an energy harvesting communication system under a battery usage constraint. Specifically, in each time slot, we assume the harvested energy can be used to power the transmitter immediately without entering into the battery, or stored into the battery for now and retrieved later for transmission. Whenever the battery is charged or discharged, a cost will be incurred to account for its impact on battery degradation. We impose an long-term average cost constraint on the battery, which is translated to the average number of charge/discharge operations per unit time. The objective is to develop an online policy to maximize the long-term average throughput of the transmitter under energy causality constraint and the battery usage constraint. We first relax the energy causality constraint on the system, and impose an energy flow conservation constraint instead. We show that the optimal energy management policy has a double-threshold structure: if the amount of energy arrives in each time slot lies in between the two thresholds, it will be used immediately without involving the battery; otherwise, the battery will be charged or discharged accordingly to maintain a constant transmit power. We then modify the double-threshold policy slightly to accommodate the energy causality constraint, and analyze its long-term performance. We show that the system achieves the same long-term average performance, thus it is optimal.
UR - http://www.scopus.com/inward/record.url?scp=84985912259&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84985912259&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2016.7541344
DO - 10.1109/ISIT.2016.7541344
M3 - Conference contribution
AN - SCOPUS:84985912259
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 475
EP - 479
BT - Proceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 IEEE International Symposium on Information Theory, ISIT 2016
Y2 - 10 July 2016 through 15 July 2016
ER -