Optimal Inverted Landing in a Small Aerial Robot with Varied Approach Velocities and Landing Gear Designs

Bryan Habas, Bader Alattar, Brian Davis, Jack W. Langelaan, Bo Cheng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Inverted landing is a challenging feat to perform in aerial robots, especially without external positioning. However, it is routinely performed by biological fliers such as bees, flies, and bats. Our previous observations of landing behaviors in flies suggest an open-loop causal relationship between their putative visual cues and the kinematics of the aerial maneuvers executed. For example, the degree of rotational maneuver (the amount of body inversion prior to touchdown) and the amount of leg-assisted body swing both depend on the flies' initial body states while approaching the ceiling. In this work, inspired by the inverted landing behavior of flies, we used a physics-based simulation with experimental validation to systematically investigate how optimized inverted landing maneuvers depend on the initial approach velocities with varied magnitude and direction. This was done by analyzing the putative visual cues (that can be derived from onboard measurements) during optimal maneuvering trajectories. We identified a three-dimensional policy region, from which a mapping to a global inverted landing policy can be developed without the use of external positioning data. Through simulation, we also investigated the effects of an array of landing gear designs on the optimized landing performance and identified their advantages and disadvantages. The above results have been partially validated using limited experimental testing and will continue to inform and guide our future experiments, for example by applying the calculated global policy.

Original languageEnglish (US)
Title of host publication2022 IEEE International Conference on Robotics and Automation, ICRA 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2003-2009
Number of pages7
ISBN (Electronic)9781728196817
DOIs
StatePublished - 2022
Event39th IEEE International Conference on Robotics and Automation, ICRA 2022 - Philadelphia, United States
Duration: May 23 2022May 27 2022

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference39th IEEE International Conference on Robotics and Automation, ICRA 2022
Country/TerritoryUnited States
CityPhiladelphia
Period5/23/225/27/22

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Optimal Inverted Landing in a Small Aerial Robot with Varied Approach Velocities and Landing Gear Designs'. Together they form a unique fingerprint.

Cite this