TY - JOUR
T1 - Optimal procedure planning and guidance system for peripheral bronchoscopy
AU - Gibbs, Jason D.
AU - Graham, Michael W.
AU - Bascom, Rebecca
AU - Cornish, Duane C.
AU - Khare, Rahul
AU - Higgins, William E.
PY - 2014/3
Y1 - 2014/3
N2 - With the development of multidetector computed-tomography (MDCT) scanners and ultrathin bronchoscopes, the use of bronchoscopy for diagnosing peripheral lung-cancer nodules is becoming a viable option. The work flow for assessing lung cancer consists of two phases: 1) 3-D MDCT analysis and 2) live bronchoscopy. Unfortunately, the yield rates for peripheral bronchoscopy have been reported to be as low as 14%, and bronchoscopy performance varies considerably between physicians. Recently, proposed image-guided systems have shown promise for assisting with peripheral bronchoscopy. Yet, MDCT-based route planning to target sites has relied on tedious error-prone techniques. In addition, route planning tends not to incorporate known anatomical, device, and procedural constraints that impact a feasible route. Finally, existing systems do not effectively integrate MDCT-derived route information into the live guidance process. We propose a system that incorporates an automatic optimal route-planning method, which integrates known route constraints. Furthermore, our system offers a natural translation of the MDCT-based route plan into the live guidance strategy via MDCT/video data fusion. An image-based study demonstrates the route-planning method's functionality. Next, we present a prospective lung-cancer patient study in which our system achieved a successful navigation rate of 91% to target sites. Furthermore, when compared to a competing commercial system, our system enabled bronchoscopy over two airways deeper into the airway-tree periphery with a sample time that was nearly 2 min shorter on average. Finally, our system's ability to almost perfectly predict the depth of a bronchoscope's navigable route in advance represents a substantial benefit of optimal route planning.
AB - With the development of multidetector computed-tomography (MDCT) scanners and ultrathin bronchoscopes, the use of bronchoscopy for diagnosing peripheral lung-cancer nodules is becoming a viable option. The work flow for assessing lung cancer consists of two phases: 1) 3-D MDCT analysis and 2) live bronchoscopy. Unfortunately, the yield rates for peripheral bronchoscopy have been reported to be as low as 14%, and bronchoscopy performance varies considerably between physicians. Recently, proposed image-guided systems have shown promise for assisting with peripheral bronchoscopy. Yet, MDCT-based route planning to target sites has relied on tedious error-prone techniques. In addition, route planning tends not to incorporate known anatomical, device, and procedural constraints that impact a feasible route. Finally, existing systems do not effectively integrate MDCT-derived route information into the live guidance process. We propose a system that incorporates an automatic optimal route-planning method, which integrates known route constraints. Furthermore, our system offers a natural translation of the MDCT-based route plan into the live guidance strategy via MDCT/video data fusion. An image-based study demonstrates the route-planning method's functionality. Next, we present a prospective lung-cancer patient study in which our system achieved a successful navigation rate of 91% to target sites. Furthermore, when compared to a competing commercial system, our system enabled bronchoscopy over two airways deeper into the airway-tree periphery with a sample time that was nearly 2 min shorter on average. Finally, our system's ability to almost perfectly predict the depth of a bronchoscope's navigable route in advance represents a substantial benefit of optimal route planning.
UR - http://www.scopus.com/inward/record.url?scp=84896858898&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896858898&partnerID=8YFLogxK
U2 - 10.1109/TBME.2013.2285627
DO - 10.1109/TBME.2013.2285627
M3 - Article
C2 - 24235246
AN - SCOPUS:84896858898
SN - 0018-9294
VL - 61
SP - 638
EP - 657
JO - IEEE Transactions on Biomedical Engineering
JF - IEEE Transactions on Biomedical Engineering
IS - 3
M1 - 6632907
ER -