@inproceedings{252e61fac0b2483286babfa4361de8de,
title = "Optimal speed scheduling for hybrid solar aircraft with arrival time condition",
abstract = "Improvements in solar cell weight and performance has enabled the development of small solar powered aircraft which operate at low altitudes. Unlike high altitude pseu-dosatellites, these aircraft must contend with significant stochastic variations in wind and solar energy. This paper examines speed scheduling for solar augmented aircraft (i.e. an aircraft equipped with solar panels and a supplementary energy source which cannot be recharged in flight). We show that solar energy can be considered as identical to vertical air motion exploited by a sailplane. This permits soaring speed to fly theory to be extended to incorporate both solar energy and atmospheric vertical motion. The use of stored energy onboard allows derivation of a speed to fly theory with an arrival time constraint, allowing the exploitation of stochastic energy during a flight plan. The speed schedule is tested in Monte Carlo simulations and shows the ability to satisfy an arrival time constraint while reducing energy consumption by approximately 2% and reducing variation in final energy state by approximately 3%. The algorithm is also tested in flight using a small uas, and shows the ability to satisfy an arrival time condition within 1%.",
author = "Bird, {John J.} and Langelaan, {Jack W.}",
year = "2019",
month = jan,
day = "1",
doi = "10.2514/6.2019-1421",
language = "English (US)",
isbn = "9781624105784",
series = "AIAA Scitech 2019 Forum",
publisher = "American Institute of Aeronautics and Astronautics Inc, AIAA",
booktitle = "AIAA Scitech 2019 Forum",
note = "AIAA Scitech Forum, 2019 ; Conference date: 07-01-2019 Through 11-01-2019",
}