Abstract
We have developed a protocol to produce large quantities of high purity myristoylated and non-myristoylated neuronal calcium sensor 1 (NCS-1) protein. NCS-1 is a member of the neuronal calcium sensor (NCS) family and plays an important role in modulating G-protein signaling and exocytosis pathways in cells. Many of these functions are calcium-dependent and require NCS-1 to be modified with an N-terminal myristoyl moiety. In our system, a C-terminally 6× His-tagged variant of NCS-1 was co-expressed with yeast N-myristoyltransferase (NMT) in ZYP-5052 auto-induction media supplemented with sodium myristate (100-200 μM). With optimized growth conditions and a high capacity metal affinity purification scheme, >50 mg of homogenous myristoylated NCS-1 is obtained from 1 L of culture in a single step. The properties of the C-terminally tagged NCS-1 variants are indistinguishable from those reported for untagged NCS-1. Using this system, we have also isolated and characterized mutant NCS-1 proteins that have attenuated (NCS-1 E120Q) and abrogated (NCS-1 ΔEF) ability to bind calcium. The large quantities of NCS-1 proteins isolated from small culture volumes of auto-inducible media will provide the necessary reagents for further biochemical and structural characterization. The affinity tag at the C-terminus of the protein provides a suitable reagent for easily identifying binding partners of the various NCS-1 constructs. Additionally, this method could be used to produce other recombinant proteins of the NCS family, and may be extended to express and isolate myristoylated variants of other proteins.
Original language | English (US) |
---|---|
Pages (from-to) | 103-112 |
Number of pages | 10 |
Journal | Protein Expression and Purification |
Volume | 61 |
Issue number | 2 |
DOIs | |
State | Published - Oct 2008 |
All Science Journal Classification (ASJC) codes
- Biotechnology