Abstract
We present a quadratic unconstrained binary optimization (QUBO) framework for reasoning about multiple object detections with spatial overlaps. The method maximizes an objective function composed of unary detection confidence scores and pairwise overlap constraints to determine which overlapping detections should be suppressed, and which should be kept. The framework is flexible enough to handle the problem of detecting objects as a shape covering of a foreground mask, and to handle the problem of filtering confidence weighted detections produced by a traditional sliding window object detector. In our experiments, we show that our method outperforms two existing state-of-the-art pedestrian detectors.
Original language | English (US) |
---|---|
Article number | 6619317 |
Pages (from-to) | 3690-3697 |
Number of pages | 8 |
Journal | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
DOIs | |
State | Published - Nov 15 2013 |
Event | 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013 - Portland, OR, United States Duration: Jun 23 2013 → Jun 28 2013 |
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition