Optimizing demand response of plug-in hybrid electric vehicles using quadratic programming

Saeid Bashash, Hosam K. Fathy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

22 Scopus citations


This paper develops a convex quadratic programming (QP) formulation for the demand response (DR) optimization of plug-in hybrid electric vehicles (PHEVs) under time-varying electricity price signals. The work is motivated by the need for a computationally-efficient PHEV DR model that accounts for the ohmic energy losses in PHEV batteries, and is scalable to large-scale vehicle-to-grid (V2G) optimization and control applications. We use a previously-developed power-split PHEV model with an optimal power management strategy to compute the average distance-based PHEV energy consumption characteristics. Moreover, we use an equivalent circuit battery model for the PHEV's charge and discharge process. We then derive the PHEV's total fuel and electric energy cost as a quadratic function of battery state-of-charge (SOC), and show that the cost function is convex. Finally, we use a standard QP solver to optimize the PHEV's demand response for a few sample trips obtained from the U.S. National Household Travel Survey (NHTS) dataset. The achieved optimization time for a 24-hour time window with 5 min. resolution is less than 0.1 s (using a single quad-core computer). The method can hence be easily scaled for large-scale smart grid optimization and control studies.

Original languageEnglish (US)
Title of host publication2013 American Control Conference, ACC 2013
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Print)9781479901777
StatePublished - 2013
Event2013 1st American Control Conference, ACC 2013 - Washington, DC, United States
Duration: Jun 17 2013Jun 19 2013

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619


Other2013 1st American Control Conference, ACC 2013
Country/TerritoryUnited States
CityWashington, DC

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering


Dive into the research topics of 'Optimizing demand response of plug-in hybrid electric vehicles using quadratic programming'. Together they form a unique fingerprint.

Cite this