Abstract
A kinetic investigation into the origin of enantioselectivity for the Pd[(-)-sparteine]Cl2-catalyzed aerobic oxidative kinetic resolution (OKR) is reported. A mechanism to account for a newly discovered chloride dissociation from Pd[(-)-sparteine]Cl2 prior to alcohol binding is proposed. The mechanism includes (1) chloride dissociation from Pd[(-)-sparteine]Cl2 to form cationic Pd(-)-sparteine]Cl, (2) alcohol binding, (3) deprotonation of Pd-bound alcohol to form a Pd-alkoxide, and (4) β-hydride elimination of Pd-alkoxide to form ketone product and a Pd-hydride. Utilizing the addition of (-)-sparteine HCl to control the [Cl -] and [H+] and the resulting derived rate law, the key microscopic kinetic and thermodynamic constants were extracted for each enantiomer of sec-phenethyl alcohol. These constants allow for the successful simulation of the oxidation rate in the presence of exogenous (-)-sparteine HCl. A rate law for oxidation of the racemic alcohol was derived that allows for the successful prediction of the experimentally measured krel values when using the extracted constants. Besides a factor of 10 difference between the relative rates of β-hydride elimination for the enantiomers, the main enhancement in enantiodetermination results from a concentration effect of (-)-sparteine HCl and the relative rates of reprotonation of the diastereomeric Pd-alkoxides.
Original language | English (US) |
---|---|
Pages (from-to) | 14817-14824 |
Number of pages | 8 |
Journal | Journal of the American Chemical Society |
Volume | 127 |
Issue number | 42 |
DOIs | |
State | Published - Nov 1 2005 |
All Science Journal Classification (ASJC) codes
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry