Oscillations and dynamics in a two-dimensional prey-predator system

Małgorzata Kowalik, Adam Lipowski, Antonio L. Ferreira

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


Using Monte Carlo simulations we study two-dimensional prey-predator systems. Measuring the variance of densities of prey and predators on the triangular lattice and on the lattice with eight neighbors, we conclude that temporal oscillations of these densities vanish in the thermodynamic limit. This result suggests that such oscillations do not exist in two-dimensional models, at least when driven by local dynamics. Depending on the control parameter, the model could be either in an active or in an absorbing phase, which are separated by the critical point. The critical behavior of this model is studied using the dynamical Monte Carlo method. This model has two dynamically nonsymmetric absorbing states. In principle both absorbing states can be used for the analysis of the critical point. However, dynamical simulations which start from the unstable absorbing state suffer from metastablelike effects, which sometimes renders the method inefficient.

Original languageEnglish (US)
Pages (from-to)5
Number of pages1
JournalPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Issue number6
StatePublished - Dec 9 2002

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics


Dive into the research topics of 'Oscillations and dynamics in a two-dimensional prey-predator system'. Together they form a unique fingerprint.

Cite this