TY - GEN
T1 - Overall effectiveness and flowfield measurements for an endwall with Non-Axisymmetric contouring
AU - Mensch, Amy
AU - Thole, Karen A.
N1 - Publisher Copyright:
© Copyright 2015 by ASME.
PY - 2015
Y1 - 2015
N2 - Endwall contouring is a technique used to reduce the strength and development of three-dimensional secondary flows in a turbine vane or blade passage in a gas turbine. The secondary flows locally affect the external heat transfer, particularly on the endwall surface. The combination of external and internal convective heat transfer along with solid conduction determines component temperatures, which affect the service life of turbine components. A conjugate heat transfer model is used to measure the non-dimensional external surface temperature, known as overall effectiveness, of an endwall with non-Axisymmetric contouring. The endwall cooling methods include internal impingement cooling and external film cooling. Measured values of overall effectiveness show that endwall contouring reduces the impingement effectiveness alone, but increases the effectiveness of film cooling alone. Given the combined case of both impingement and film cooling, the laterally averaged overall effectiveness is not significantly changed between the flat and contoured endwall. Flowfield measurements indicate that the size and location of the passage vortex changes as film cooling is added and as the blowing ratio increases. Because endwall contouring can produce local effects on internal cooling and film cooling performance, the implications for heat transfer should be considered in endwall contour designs.
AB - Endwall contouring is a technique used to reduce the strength and development of three-dimensional secondary flows in a turbine vane or blade passage in a gas turbine. The secondary flows locally affect the external heat transfer, particularly on the endwall surface. The combination of external and internal convective heat transfer along with solid conduction determines component temperatures, which affect the service life of turbine components. A conjugate heat transfer model is used to measure the non-dimensional external surface temperature, known as overall effectiveness, of an endwall with non-Axisymmetric contouring. The endwall cooling methods include internal impingement cooling and external film cooling. Measured values of overall effectiveness show that endwall contouring reduces the impingement effectiveness alone, but increases the effectiveness of film cooling alone. Given the combined case of both impingement and film cooling, the laterally averaged overall effectiveness is not significantly changed between the flat and contoured endwall. Flowfield measurements indicate that the size and location of the passage vortex changes as film cooling is added and as the blowing ratio increases. Because endwall contouring can produce local effects on internal cooling and film cooling performance, the implications for heat transfer should be considered in endwall contour designs.
UR - http://www.scopus.com/inward/record.url?scp=84954167772&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84954167772&partnerID=8YFLogxK
U2 - 10.1115/GT2015-42706
DO - 10.1115/GT2015-42706
M3 - Conference contribution
AN - SCOPUS:84954167772
T3 - Proceedings of the ASME Turbo Expo
BT - Heat Transfer
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, GT 2015
Y2 - 15 June 2015 through 19 June 2015
ER -