TY - JOUR
T1 - Overcoming Interfacial Scaling Using Engineered Nanocelluloses
T2 - A QCM-D Study
AU - Sheikhi, Amir
AU - Olsson, Adam L.J.
AU - Tufenkji, Nathalie
AU - Kakkar, Ashok
AU - Van De Ven, Theo G.M.
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/10/10
Y1 - 2018/10/10
N2 - Nucleation of sparingly soluble species, such as the inorganic salts of calcium, magnesium, and phosphorous, followed by their growth at solid-liquid interfaces has turned into a major concern in water-based industries. Increased resistance against heat, mass, and momentum transfer is the main drawback of the so-called scaling phenomenon. Although phosphorous-, nitrogen-, and sulfur-based antiscaling macromolecules offer adequate antiscaling performance, their potential negative environmental impacts render them less desirable. Despite recent efforts in developing green antiscalants, there has been no promising green solution based on biomass due to its chemical inertness. Here, we use quartz crystal microbalance with dissipation monitoring (QCM-D) to evaluate the real-time performance of an emerging family of nanoengineered anionic hairy cellulose crystals, bearing dicarboxylated amorphous cellulose chains, with a charge density of more than 5.5 mequiv per g, in preventing the nucleation and growth of calcium carbonate, the most common industrial scale. Remarkably, a CaCO3 mass deposition rate ∼0 (complete scale inhibition) is obtained when less than 10 ppm of the hairy nanocellulose is added to an already scaled surface under a harsh supersaturated condition at 50 °C. Motivated by their threshold antiscaling effect, we show that coating planar silica surfaces with hairy nanocelluloses may result in scale-resistant interfaces. This research envisions how engineered hairy nanocelluloses may have practical implications for developing scale-resistant interfaces based on the most abundant biopolymer in the world.
AB - Nucleation of sparingly soluble species, such as the inorganic salts of calcium, magnesium, and phosphorous, followed by their growth at solid-liquid interfaces has turned into a major concern in water-based industries. Increased resistance against heat, mass, and momentum transfer is the main drawback of the so-called scaling phenomenon. Although phosphorous-, nitrogen-, and sulfur-based antiscaling macromolecules offer adequate antiscaling performance, their potential negative environmental impacts render them less desirable. Despite recent efforts in developing green antiscalants, there has been no promising green solution based on biomass due to its chemical inertness. Here, we use quartz crystal microbalance with dissipation monitoring (QCM-D) to evaluate the real-time performance of an emerging family of nanoengineered anionic hairy cellulose crystals, bearing dicarboxylated amorphous cellulose chains, with a charge density of more than 5.5 mequiv per g, in preventing the nucleation and growth of calcium carbonate, the most common industrial scale. Remarkably, a CaCO3 mass deposition rate ∼0 (complete scale inhibition) is obtained when less than 10 ppm of the hairy nanocellulose is added to an already scaled surface under a harsh supersaturated condition at 50 °C. Motivated by their threshold antiscaling effect, we show that coating planar silica surfaces with hairy nanocelluloses may result in scale-resistant interfaces. This research envisions how engineered hairy nanocelluloses may have practical implications for developing scale-resistant interfaces based on the most abundant biopolymer in the world.
UR - http://www.scopus.com/inward/record.url?scp=85054473685&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054473685&partnerID=8YFLogxK
U2 - 10.1021/acsami.8b07435
DO - 10.1021/acsami.8b07435
M3 - Article
C2 - 30203958
AN - SCOPUS:85054473685
SN - 1944-8244
VL - 10
SP - 34553
EP - 34560
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 40
ER -