Paleoclimate and paleoecology of the latest Eocene Florissant flora of central Colorado, U.S.A.

Sarah E. Allen, Alexander J. Lowe, Daniel J. Peppe, Herbert W. Meyer

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


The uppermost Eocene Florissant Formation of central Colorado, U.S.A. contains a diverse flora and fauna preserved in lacustrine facies and represents a key episode in Earth history immediately preceding the Eocene-Oligocene boundary. Laminated shales contain impressions of non-monocot angiosperm leaves that were used to estimate paleoecological and paleoclimatic parameters using leaf physiognomic methods including: leaf mass per area (MA), digital leaf physiognomy (DiLP), leaf margin analysis (LMA), and leaf area analysis (LAA). The majority (58%) of the morphotypes analyzed for MA suggested a semi-evergreen leaf lifespan, whereas another 27% indicated a deciduous habit and 15% an evergreen habit. There was no significant relationship between MA and insect damage based on a small subset of Florissant's leaves. Higher MA values (~73% of leaves ≥ one-year lifespan), coupled with a tendency toward long and narrow leaf shapes and small leaf areas, indicate the existence of sclerophyllous vegetation. Using the global regression for mean annual temperature (MAT), the DiLP estimate of MAT was anomalously cold: 5.5 ± 4 °C. However, using a Northern Hemisphere regression the DiLP MAT estimate of 11.6 ± 3.3 °C was more plausible. Using DiLP, mean annual precipitation (MAP) was estimated at 740 + 608/−334 mm∙yr−1, which supports dry conditions. Estimates for MAT and MAP using the univariate LMA and LAA methods overlapped within uncertainty of the DiLP results. In addition, those taxa classified as growing in wet areas (riparian) had significantly more teeth than non-riparian taxa. These paleoclimatic and paleoecological results suggest that outside the riparian forest, the Florissant flora sampled a seasonally dry temperate sclerophyllous shrubland to woodland, perhaps similar to modern chaparral forests, in the western interior of the U.S.A. just before the transition into the cooler Oligocene.

Original languageEnglish (US)
Article number109678
JournalPalaeogeography, Palaeoclimatology, Palaeoecology
StatePublished - Aug 1 2020

All Science Journal Classification (ASJC) codes

  • Oceanography
  • Ecology, Evolution, Behavior and Systematics
  • Earth-Surface Processes
  • Palaeontology


Dive into the research topics of 'Paleoclimate and paleoecology of the latest Eocene Florissant flora of central Colorado, U.S.A.'. Together they form a unique fingerprint.

Cite this