Parameter estimation with data-driven nonparametric likelihood functions

Shixiao W. Jiang, John Harlim

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


In this paper, we consider a surrogate modeling approach using a data-driven nonparametric likelihood function constructed on a manifold on which the data lie (or to which they are close). The proposed method represents the likelihood function using a spectral expansion formulation known as the kernel embedding of the conditional distribution. To respect the geometry of the data, we employ this spectral expansion using a set of data-driven basis functions obtained from the diffusion maps algorithm. The theoretical error estimate suggests that the error bound of the approximate data-driven likelihood function is independent of the variance of the basis functions, which allows us to determine the amount of training data for accurate likelihood function estimations. Supporting numerical results to demonstrate the robustness of the data-driven likelihood functions for parameter estimation are given on instructive examples involving stochastic and deterministic differential equations. When the dimension of the data manifold is strictly less than the dimension of the ambient space, we found that the proposed approach (which does not require the knowledge of the data manifold) is superior compared to likelihood functions constructed using standard parametric basis functions defined on the ambient coordinates. In an example where the data manifold is not smooth and unknown, the proposed method is more robust compared to an existing polynomial chaos surrogate model which assumes a parametric likelihood, the non-intrusive spectral projection. In fact, the estimation accuracy is comparable to direct MCMC estimates with only eight likelihood function evaluations that can be done offline as opposed to 4000 sequential function evaluations, whenever direct MCMC can be performed. A robust accurate estimation is also found using a likelihood function trained on statistical averages of the chaotic 40-dimensional Lorenz-96 model on a wide parameter domain.

Original languageEnglish (US)
Article number559
Issue number6
StatePublished - Jun 1 2019

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Mathematical Physics
  • Physics and Astronomy (miscellaneous)
  • Electrical and Electronic Engineering


Dive into the research topics of 'Parameter estimation with data-driven nonparametric likelihood functions'. Together they form a unique fingerprint.

Cite this