Parameterized optimal trajectory generation for target localization

Jeffrey B. Corbets, Jack W. Langelaan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

This paper presents an approach to near-optimal target localization for small and micro uninhabited aerial vehicles using a family of pre-computed parameterized trajectories. These trajectories are pre-computed for a set of nominal target locations uniformly distributed over the sensor field of view and stored off-line. Upon target detection the vehicle chooses the trajectory corresponding to the closest nominal target location. Adaptation is enabled with the ability to select new trajectories as the target state estimate is updated. Simulation results show the validity of this approach for both single target and sequential target localization missions. Further, results show that very coarse trajectory tables give the same or better target localization performance as finely discretized tables.

Original languageEnglish (US)
Title of host publicationCollection of Technical Papers - AIAA Guidance, Navigation, and Control Conference 2007
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
Pages3842-3852
Number of pages11
ISBN (Print)1563479044, 9781563479045
DOIs
StatePublished - 2007
EventAIAA Guidance, Navigation, and Control Conference 2007 - Hilton Head, SC, United States
Duration: Aug 20 2007Aug 23 2007

Publication series

NameCollection of Technical Papers - AIAA Guidance, Navigation, and Control Conference 2007
Volume4

Other

OtherAIAA Guidance, Navigation, and Control Conference 2007
Country/TerritoryUnited States
CityHilton Head, SC
Period8/20/078/23/07

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Parameterized optimal trajectory generation for target localization'. Together they form a unique fingerprint.

Cite this