TY - JOUR
T1 - Passive diffusion of naltrexone into human and animal cells and upregulation of cell proliferation
AU - Cheng, Fan
AU - McLaughlin, Patricia
AU - Banks, William A.
AU - Zagon, Ian
PY - 2009/9
Y1 - 2009/9
N2 - Naltrexone (NTX) is a potent opioid antagonist that promotes cell proliferation by upregulating DNA synthesis through displacement of the tonically active inhibitory peptide, opioid growth factor (OGF) from its receptor (OGFr). To investigate how NTX enters cells, NTX was fluorescently labeled [1-(N)-fluoresceinyl NTX thiosemicarbazone; FNTX] to study its uptake by living cultured cells. When human head and neck squamous cell carcinoma cell line (SCC-1) was incubated with FNTX for as little as 1 min, cells displayed nuclear and cytoplasmic staining of FNTX as determined by fluorescent deconvolution microscopy, with enrichment of fluorescent signal in the nucleus and nucleolus. The same temporal-spatial distribution of FNTX was detected in a human pancreatic cancer cell line (MIA PaCa-2), African green monkey kidney cell line (COS-7), and human mesenchymal stem cells (hMSCs). FNTX remained in cells for as long as 48 h. FNTX was internalized in SCC-1 cells when incubation occurred at 4°C, with the signal being comparable to that recorded at 37°C. A 100-fold excess of NTX or a variety of other opioid ligands did not alter the temporal-spatial distribution of FNTX. Neither fluorescein-labeled dextran nor fluorescein alone entered the cells. To study the effect of FNTX on DNA synthesis, cells incubated with FNTX at concentrations ranging from 10 -5 to 10-8 M had a 5-bromo-2′-deoxyuridine index that was 39-82% greater than for vehicle-treated cells and was comparable to that of unlabeled NTX (37-70%). Taken together, these results suggested that NTX enters cells by passive diffusion in a nonsaturable manner.
AB - Naltrexone (NTX) is a potent opioid antagonist that promotes cell proliferation by upregulating DNA synthesis through displacement of the tonically active inhibitory peptide, opioid growth factor (OGF) from its receptor (OGFr). To investigate how NTX enters cells, NTX was fluorescently labeled [1-(N)-fluoresceinyl NTX thiosemicarbazone; FNTX] to study its uptake by living cultured cells. When human head and neck squamous cell carcinoma cell line (SCC-1) was incubated with FNTX for as little as 1 min, cells displayed nuclear and cytoplasmic staining of FNTX as determined by fluorescent deconvolution microscopy, with enrichment of fluorescent signal in the nucleus and nucleolus. The same temporal-spatial distribution of FNTX was detected in a human pancreatic cancer cell line (MIA PaCa-2), African green monkey kidney cell line (COS-7), and human mesenchymal stem cells (hMSCs). FNTX remained in cells for as long as 48 h. FNTX was internalized in SCC-1 cells when incubation occurred at 4°C, with the signal being comparable to that recorded at 37°C. A 100-fold excess of NTX or a variety of other opioid ligands did not alter the temporal-spatial distribution of FNTX. Neither fluorescein-labeled dextran nor fluorescein alone entered the cells. To study the effect of FNTX on DNA synthesis, cells incubated with FNTX at concentrations ranging from 10 -5 to 10-8 M had a 5-bromo-2′-deoxyuridine index that was 39-82% greater than for vehicle-treated cells and was comparable to that of unlabeled NTX (37-70%). Taken together, these results suggested that NTX enters cells by passive diffusion in a nonsaturable manner.
UR - http://www.scopus.com/inward/record.url?scp=69249090579&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=69249090579&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00311.2009
DO - 10.1152/ajpregu.00311.2009
M3 - Article
C2 - 19605761
AN - SCOPUS:69249090579
SN - 0363-6119
VL - 297
SP - R844-R852
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 3
ER -