Passive vector sensing for non-cooperative emitter localization in indoor environments

Donald L. Hall, Ram M. Narayanan, Erik H. Lenzing, David M. Jenkins

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Indoor emitter localization is a topic of continued interest for improving wireless security as wireless technologies continue to become more advanced. Conventional methods have focused on the localization of devices relative to multi-sensor systems owing to ease of implementation with pre-existing infrastructures. This work, however, focuses on enhancing wireless security via non-cooperative emitter localization in scenarios where only a single receiver can be employed. A vector sensor is simulated and experimentally developed that extracts three-dimensional signal characteristics for room-based emitter localization and is compared to conventional methodologies such as Received Signal Strength (RSS), Time of Arrival (ToA), and Direction of Arrival (DoA). The proposed method generates time-frequency fingerprints and extracts features through dimensionality reduction. A second stage extracts spatial parameters consisting of Channel State Information (CSI) and DoAs that are analyzed using a Gaussian Mixture Model (GMM) to segregate fine-grained regions of interest within each room where the non-cooperative emitter resides. Blind channel equalization cascaded with a least squares channel estimate is used for acquiring the CSI, whereas the DoAs are obtained by unique trigonometric properties of the vector sensing antenna. The results demonstrate that a vector sensor can improve non-cooperative emitter localization and enhance wireless security in indoor environments.

Original languageEnglish (US)
Article number442
JournalElectronics (Switzerland)
Volume7
Issue number12
DOIs
StatePublished - Dec 2018

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Signal Processing
  • Hardware and Architecture
  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Passive vector sensing for non-cooperative emitter localization in indoor environments'. Together they form a unique fingerprint.

Cite this