PatchRefineNet: Improving Binary Segmentation by Incorporating Signals from Optimal Patch-wise Binarization

Savinay Nagendra, Daniel Kifer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The purpose of binary segmentation models is to determine which pixels belong to an object of interest (e.g., which pixels in an image are part of roads). The models assign a logit score (i.e., probability) to each pixel and these are converted into predictions by thresholding (i.e., each pixel with logit score ≥ τ is predicted to be part of a road). However, a common phenomenon in current and former state-of-the-art segmentation models is spatial bias - in some patches, the logit scores are consistently biased upwards and in others they are consistently biased downwards. These biases cause false positives and false negatives in the final predictions. In this paper, we propose PatchRefineNet (PRN), a small network that sits on top of a base segmentation model and learns to correct its patch-specific biases. Across a wide variety of base models, PRN consistently helps them improve mIoU by 2-3%. One of the key ideas behind PRN is the addition of a novel supervision signal during training. Given the logit scores produced by the base segmentation model, each pixel is given a pseudo-label that is obtained by optimally thresholding the logit scores in each image patch. Incorporating these pseudo-labels into the loss function of PRN helps correct systematic biases and reduce false positives/negatives. Although we mainly focus on binary segmentation, we also show how PRN can be extended to saliency detection and few-shot segmentation. We also discuss how the ideas can be extended to multiclass segmentation. Source code is available at https://github.com/savinay95n/PatchRefineNet.

Original languageEnglish (US)
Title of host publicationProceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1350-1361
Number of pages12
ISBN (Electronic)9798350318920
DOIs
StatePublished - Jan 3 2024
Event2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 - Waikoloa, United States
Duration: Jan 4 2024Jan 8 2024

Publication series

NameProceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024

Conference

Conference2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
Country/TerritoryUnited States
CityWaikoloa
Period1/4/241/8/24

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Cite this