TY - JOUR
T1 - Peanuts as a nighttime snack enrich butyrate-producing bacteria compared to an isocaloric lower-fat higher-carbohydrate snack in adults with elevated fasting glucose
T2 - A randomized crossover trial
AU - Sapp, Philip A.
AU - Kris-Etherton, Penny M.
AU - Arnesen, Elke A.
AU - Chen See, Jeremy R.
AU - Lamendella, Regina
AU - Petersen, Kristina S.
N1 - Publisher Copyright:
© 2022 The Author(s)
PY - 2022/10
Y1 - 2022/10
N2 - Background: Tree nuts have glucoregulatory effects and influence gut microbiota composition. The effect of peanuts on the microbiota has not been investigated. Objectives: The aim was to examine the effect of 28 g/d of peanuts for 6-wks, compared to an isocaloric lower-fat higher-carbohydrate (LFHC) snack, on gut microbiota composition. A secondary aim was to identify functional and active compositional differences in a subset of participants using metatranscriptomics. Methods: In a randomized, crossover trial, 50 adults (48% female; 42 ± 15 y; BMI 28.3 ± 5.6 kg/m2; plasma glucose 100 ± 8 mg/dL) consumed 28 g/d of dry roasted, unsalted, peanuts (164 kcal; 11% E carbohydrate, 17% E protein, 73% E fat, and 2.4 g fiber) or a LFHC snack (164 kcal; 53% E carbohydrate, 17% E protein, 33% E fat, and 3 g fiber) for 6-wk (4-wk washout period). Gut bacterial composition was measured using 16S rRNA sequencing in the whole cohort. Exploratory metatranscriptomic analyses were conducted on a random subset (n = 24) of samples from the Peanut condition. Results: No between-condition differences in α- or β- diversity were observed. Following peanut intake, Ruminococcaceae were significantly more abundant [Linear discriminant analysis score (LDA) = 2.8; P = 0.027)] compared to LFHC. Metatranscriptomics showed increased expression of the K03518 (aerobic carbon-monoxide dehydrogenase small subunit) gene following peanut intake (LDA = 2.0; P = 0.004) and Roseburia intestinalis L1-82 was identified as a contributor to the increased expression. Conclusion: An increased abundance of Ruminococcaceae was observed following consumption of 28 g/d of peanuts in adults with elevated fasting glucose after 6-wks. Metatranscriptomics revealed increased expression of the K03518 gene. These results suggest peanut intake enriches a known butyrate producer and the increased expression of a gene implicated in butyrate production adds further support for peanut-induced gut microbiome modulation. NCT: 03654651.
AB - Background: Tree nuts have glucoregulatory effects and influence gut microbiota composition. The effect of peanuts on the microbiota has not been investigated. Objectives: The aim was to examine the effect of 28 g/d of peanuts for 6-wks, compared to an isocaloric lower-fat higher-carbohydrate (LFHC) snack, on gut microbiota composition. A secondary aim was to identify functional and active compositional differences in a subset of participants using metatranscriptomics. Methods: In a randomized, crossover trial, 50 adults (48% female; 42 ± 15 y; BMI 28.3 ± 5.6 kg/m2; plasma glucose 100 ± 8 mg/dL) consumed 28 g/d of dry roasted, unsalted, peanuts (164 kcal; 11% E carbohydrate, 17% E protein, 73% E fat, and 2.4 g fiber) or a LFHC snack (164 kcal; 53% E carbohydrate, 17% E protein, 33% E fat, and 3 g fiber) for 6-wk (4-wk washout period). Gut bacterial composition was measured using 16S rRNA sequencing in the whole cohort. Exploratory metatranscriptomic analyses were conducted on a random subset (n = 24) of samples from the Peanut condition. Results: No between-condition differences in α- or β- diversity were observed. Following peanut intake, Ruminococcaceae were significantly more abundant [Linear discriminant analysis score (LDA) = 2.8; P = 0.027)] compared to LFHC. Metatranscriptomics showed increased expression of the K03518 (aerobic carbon-monoxide dehydrogenase small subunit) gene following peanut intake (LDA = 2.0; P = 0.004) and Roseburia intestinalis L1-82 was identified as a contributor to the increased expression. Conclusion: An increased abundance of Ruminococcaceae was observed following consumption of 28 g/d of peanuts in adults with elevated fasting glucose after 6-wks. Metatranscriptomics revealed increased expression of the K03518 gene. These results suggest peanut intake enriches a known butyrate producer and the increased expression of a gene implicated in butyrate production adds further support for peanut-induced gut microbiome modulation. NCT: 03654651.
UR - http://www.scopus.com/inward/record.url?scp=85137048222&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85137048222&partnerID=8YFLogxK
U2 - 10.1016/j.clnu.2022.08.004
DO - 10.1016/j.clnu.2022.08.004
M3 - Article
C2 - 36067589
AN - SCOPUS:85137048222
SN - 0261-5614
VL - 41
SP - 2169
EP - 2177
JO - Clinical Nutrition
JF - Clinical Nutrition
IS - 10
ER -