TY - JOUR
T1 - Peptide sequences that target proteins for enhanced degradation during serum withdrawal
AU - Chiang, H. L.
AU - Dice, J. F.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1988
Y1 - 1988
N2 - Fibroblasts increase the catabolism of certain intracellular proteins in response to serum withdrawal, and these proteins contain specific peptide regions that may be required for their increased degradation. We show that the increased degradation of microinjected ribonuclease A during serum withdrawal can be blocked by co-injection of a pentapeptide corresponding to residues 7-11 of ribonuclease A, Lys-Phe-Glu-Arg-Gln. Furthermore, similar peptide sequences appear to play a widespread role in targeting proteins for enhanced degradation. Affinity-purified antibodies raised against the pentapeptide are able to precipitate 20-35% of radiolabeled cytosolic proteins from fibroblasts. Such proteins are preferentially degraded when cells are deprived of serum while nonimmunoprecipitable proteins are degraded at the same rate in the presence and absence of serum. Immunoreactive cytosolic proteins also exist in rat liver and kidney, and these proteins are depleted when protein degradation rates are enhanced due to starvation. Several types of evidence suggest that the peptides recognized in cellular proteins are similar to Lys-Phe-Glu-Arg-Gln but are not this exact sequence. Analyses of amino acid sequences for four proteins whose degradative rates are enhanced in response to serum withdrawal and for four proteins that are degraded in a serum-independent manner indicate two possible peptide motifs related to Lys-Phe-Glu-Arg-Gln that may target cellular proteins for enhanced degradation. These results, combined with previous studies (McElligott, M.A., Miao, P., and Dice, J.F. (1985) J. Biol. Chem. 260, 11986-11993), suggest that these peptide regions target specific proteins to a lysosomal pathway of degradation during serum withdrawal.
AB - Fibroblasts increase the catabolism of certain intracellular proteins in response to serum withdrawal, and these proteins contain specific peptide regions that may be required for their increased degradation. We show that the increased degradation of microinjected ribonuclease A during serum withdrawal can be blocked by co-injection of a pentapeptide corresponding to residues 7-11 of ribonuclease A, Lys-Phe-Glu-Arg-Gln. Furthermore, similar peptide sequences appear to play a widespread role in targeting proteins for enhanced degradation. Affinity-purified antibodies raised against the pentapeptide are able to precipitate 20-35% of radiolabeled cytosolic proteins from fibroblasts. Such proteins are preferentially degraded when cells are deprived of serum while nonimmunoprecipitable proteins are degraded at the same rate in the presence and absence of serum. Immunoreactive cytosolic proteins also exist in rat liver and kidney, and these proteins are depleted when protein degradation rates are enhanced due to starvation. Several types of evidence suggest that the peptides recognized in cellular proteins are similar to Lys-Phe-Glu-Arg-Gln but are not this exact sequence. Analyses of amino acid sequences for four proteins whose degradative rates are enhanced in response to serum withdrawal and for four proteins that are degraded in a serum-independent manner indicate two possible peptide motifs related to Lys-Phe-Glu-Arg-Gln that may target cellular proteins for enhanced degradation. These results, combined with previous studies (McElligott, M.A., Miao, P., and Dice, J.F. (1985) J. Biol. Chem. 260, 11986-11993), suggest that these peptide regions target specific proteins to a lysosomal pathway of degradation during serum withdrawal.
UR - http://www.scopus.com/inward/record.url?scp=0023891846&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023891846&partnerID=8YFLogxK
M3 - Article
C2 - 3360807
AN - SCOPUS:0023891846
SN - 0021-9258
VL - 263
SP - 6797
EP - 6805
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 14
ER -