TY - JOUR
T1 - Perceptual decisions about object shape bias visuomotor coordination during rapid interception movements
AU - Barany, Deborah A.
AU - Gómez-Granados, Ana
AU - Schrayer, Margaret
AU - Cutts, Sarah A.
AU - Singh, Tarkeshwar
N1 - Funding Information:
D.A.B. received support from American Heart Association Grant 18POST34060183. A portion of this research was supported by a grant from the University of Georgia Research Foundation, Inc. (to T.S.).
Publisher Copyright:
Copyright © 2020 the American Physiological Society.
PY - 2020/6
Y1 - 2020/6
N2 - Visual processing in parietal areas of the dorsal stream facilitates sensorimotor transformations for rapid movement. This action-related visual processing is hypothesized to play a distinct functional role from perception-related processing in the ventral stream. However, it is unclear how the two streams interact when perceptual identification is a prerequisite to executing an accurate movement. In the current study, we investigated how perceptual decision-making involving the ventral stream influences arm and eye movement strategies. Participants (n - 26) moved a robotic manipulandum using right whole arm movements to rapidly reach a stationary object or intercept a moving object on an augmented-reality display. On some blocks of trials, participants needed to identify the shape of the object (circle or ellipse) as a cue to either hit the object (circle) or move to a predefined location away from the object (ellipse). We found that during perceptual decision-making, there was an increased urgency to act during interception movements relative to reaching, which was associated with more decision errors. Faster hand reaction times were associated with a strategy to adjust the movement postinitiation, and this strategy was more prominent during interception. Saccadic reaction times were faster and initial saccadic peak velocity, initial gaze lags, and gains greater during decisions, suggesting that eye movements adapt to perceptual decision-making requirements. Together, our findings suggest that the integration of ventral stream information with visuomotor planning depends on imposed (or perceived) task demands. NEW & NOTEWORTHY Visual processing for perception and for action is thought to be mediated by two specialized neural pathways. Using a visuomotor decision-making task, we show that participants differentially utilized online perceptual decision-making in reaching and interception and that eye movements necessary for perception influenced motor decision strategies. These results provide evidence that task complexity modulates how pathways processing perception versus action information interact during the visual control of movement.
AB - Visual processing in parietal areas of the dorsal stream facilitates sensorimotor transformations for rapid movement. This action-related visual processing is hypothesized to play a distinct functional role from perception-related processing in the ventral stream. However, it is unclear how the two streams interact when perceptual identification is a prerequisite to executing an accurate movement. In the current study, we investigated how perceptual decision-making involving the ventral stream influences arm and eye movement strategies. Participants (n - 26) moved a robotic manipulandum using right whole arm movements to rapidly reach a stationary object or intercept a moving object on an augmented-reality display. On some blocks of trials, participants needed to identify the shape of the object (circle or ellipse) as a cue to either hit the object (circle) or move to a predefined location away from the object (ellipse). We found that during perceptual decision-making, there was an increased urgency to act during interception movements relative to reaching, which was associated with more decision errors. Faster hand reaction times were associated with a strategy to adjust the movement postinitiation, and this strategy was more prominent during interception. Saccadic reaction times were faster and initial saccadic peak velocity, initial gaze lags, and gains greater during decisions, suggesting that eye movements adapt to perceptual decision-making requirements. Together, our findings suggest that the integration of ventral stream information with visuomotor planning depends on imposed (or perceived) task demands. NEW & NOTEWORTHY Visual processing for perception and for action is thought to be mediated by two specialized neural pathways. Using a visuomotor decision-making task, we show that participants differentially utilized online perceptual decision-making in reaching and interception and that eye movements necessary for perception influenced motor decision strategies. These results provide evidence that task complexity modulates how pathways processing perception versus action information interact during the visual control of movement.
UR - http://www.scopus.com/inward/record.url?scp=85086298003&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85086298003&partnerID=8YFLogxK
U2 - 10.1152/JN.00098.2020
DO - 10.1152/JN.00098.2020
M3 - Article
C2 - 32374224
AN - SCOPUS:85086298003
SN - 0022-3077
VL - 123
SP - 2235
EP - 2248
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 6
ER -