TY - JOUR
T1 - Perennial ryegrass wear resistance and soil amendment by Ca- And Mg-silicates
AU - Pruyne, Derek T.
AU - Schlossberg, Maxim J.
AU - Uddin, Wakar
N1 - Publisher Copyright:
© 2019 by the authors.
PY - 2019/9/25
Y1 - 2019/9/25
N2 - Proactive optimization of soil chemistry is a task commonly overlooked by agronomic practitioners. Agricultural field assessments have reported depletion of extractable soil silicon (Si) from shallow depths of intensively managed systems. While not recognized as a plant-essential nutrient, Si accumulates in epidermal and vascular tissue of grass leaves, sheaths, and shoots. A field study of Ca/Mg-silicate (SiO3) pelletized soil conditioner was initiated on a perennial ryegrass (Lolium perenne L. cvs. 1:1:1 Manhattan, Brightstar SLT, Mach 1) athletic field in 2010. Plots were trafficked by a wear simulator weekly, June through Sept. in 2011 and 2012. Canopy quality measures, clipping yield, tissue composition, soil pH, and plant-available soil Si levels were regularly collected over the two-year study. Under intense wear treatment (traffic), perennial ryegrass plots treated annually by granular application of 1220 or 2440 kg Ca/Mg-silicates per hectare showed significantly improved mean canopy density relative to plots receiving equal Ca and Mg as lime. These described Ca/Mg-SiO3 annual application rates coincided with acetic acid extractable soil Si levels > 70 mg kg−1 in the 0-to 8-cm soil depth. Experimental and temporal variability preclude reporting of a critical threshold concentration of leaf Si for improved perennial ryegrass wear tolerance. Future efforts towards this end should sample tissue of plots receiving wear treatment, rather than adjacent, non-worn proxies.
AB - Proactive optimization of soil chemistry is a task commonly overlooked by agronomic practitioners. Agricultural field assessments have reported depletion of extractable soil silicon (Si) from shallow depths of intensively managed systems. While not recognized as a plant-essential nutrient, Si accumulates in epidermal and vascular tissue of grass leaves, sheaths, and shoots. A field study of Ca/Mg-silicate (SiO3) pelletized soil conditioner was initiated on a perennial ryegrass (Lolium perenne L. cvs. 1:1:1 Manhattan, Brightstar SLT, Mach 1) athletic field in 2010. Plots were trafficked by a wear simulator weekly, June through Sept. in 2011 and 2012. Canopy quality measures, clipping yield, tissue composition, soil pH, and plant-available soil Si levels were regularly collected over the two-year study. Under intense wear treatment (traffic), perennial ryegrass plots treated annually by granular application of 1220 or 2440 kg Ca/Mg-silicates per hectare showed significantly improved mean canopy density relative to plots receiving equal Ca and Mg as lime. These described Ca/Mg-SiO3 annual application rates coincided with acetic acid extractable soil Si levels > 70 mg kg−1 in the 0-to 8-cm soil depth. Experimental and temporal variability preclude reporting of a critical threshold concentration of leaf Si for improved perennial ryegrass wear tolerance. Future efforts towards this end should sample tissue of plots receiving wear treatment, rather than adjacent, non-worn proxies.
UR - https://www.scopus.com/pages/publications/85072683464
UR - https://www.scopus.com/inward/citedby.url?scp=85072683464&partnerID=8YFLogxK
U2 - 10.3390/agronomy9100578
DO - 10.3390/agronomy9100578
M3 - Article
AN - SCOPUS:85072683464
SN - 2073-4395
VL - 9
JO - Agronomy
JF - Agronomy
IS - 10
M1 - 578
ER -