Performance of coincidence-based PSD on LiF/ZnS detectors for multiplicity counting

Sean Robinson, Sean Stave, Azaree Lintereur, Edward Siciliano, Christian Cowles, Richard Kouzes, Spencer Behling

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Mass accountancy measurement is a nuclear nonproliferation application which utilizes coincidence and multiplicity counters to verify special nuclear material declarations. With a well-designed and efficient detector system, several relevant parameters of the material can be verified simultaneously. 6LiF/ZnS scintillating sheets may be used for this purpose due to a combination of high efficiency and short die-away times in systems designed with this material, but involve choices of detector geometry and exact material composition (e.g., the addition of Ni-quenching in the material) that must be optimized for the application. Multiplicity counting for verification of declared nuclear fuel mass involves neutron detection in conditions where several neutrons arrive in a short time window, with confounding gamma rays. This paper considers coincidence-based Pulse-Shape Discrimination (PSD) techniques developed to work under conditions of high pileup, and the performance of these algorithms with different detection materials. Simulated and real data from modern LiF/ZnS scintillator systems are evaluated with these techniques and the relationship between the performance under pileup and material characteristics (e.g., neutron peak width and total light collection efficiency) are determined, to allow for an optimal choice of detector and material.

Original languageEnglish (US)
Title of host publication2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781467398626
DOIs
StatePublished - Oct 3 2016
Event2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015 - San Diego, United States
Duration: Oct 31 2015Nov 7 2015

Publication series

Name2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015

Other

Other2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015
Country/TerritoryUnited States
CitySan Diego
Period10/31/1511/7/15

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Radiology Nuclear Medicine and imaging
  • Instrumentation

Fingerprint

Dive into the research topics of 'Performance of coincidence-based PSD on LiF/ZnS detectors for multiplicity counting'. Together they form a unique fingerprint.

Cite this