TY - GEN
T1 - Performance of public film cooling geometries produced through additive manufacturing
AU - Snyder, Jacob C.
AU - Thole, Karen A.
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - Film cooling is an essential cooling technology to allow modern gas turbines to operate at high temperatures. For years, researchers in this community have worked to improve the effectiveness of film cooling configurations by maximizing the coolant coverage and minimizing the heat flux from the hot gas into the part. Working towards this goal has generated many promising film cooling concepts with unique shapes and configurations. However, until recently, many of these designs were challenging to manufacture in actual turbine hardware due to limitations with legacy manufacturing methods. Now, with the advances in additive manufacturing, it is possible to create turbine parts using high temperature nickel alloys that feature detailed and unique geometry features. Armed with this new manufacturing power, this study aims to build and test the promising designs from the public literature that were previously difficult or impossible to implement. In this study, different cooling hole designs were manufactured in test coupons using a laser powder bed fusion process. Each nickel alloy coupon featured a single row of engine scale cooling holes, fed by a micro-channel. To evaluate performance, the overall cooling effectiveness of each coupon was measured using a matched Biot test at engine relevant conditions. The results showed that certain hole shapes are better suited for additive manufacturing than others, and that the manufacturing process can cause significant deviations from the performance reported in literature.
AB - Film cooling is an essential cooling technology to allow modern gas turbines to operate at high temperatures. For years, researchers in this community have worked to improve the effectiveness of film cooling configurations by maximizing the coolant coverage and minimizing the heat flux from the hot gas into the part. Working towards this goal has generated many promising film cooling concepts with unique shapes and configurations. However, until recently, many of these designs were challenging to manufacture in actual turbine hardware due to limitations with legacy manufacturing methods. Now, with the advances in additive manufacturing, it is possible to create turbine parts using high temperature nickel alloys that feature detailed and unique geometry features. Armed with this new manufacturing power, this study aims to build and test the promising designs from the public literature that were previously difficult or impossible to implement. In this study, different cooling hole designs were manufactured in test coupons using a laser powder bed fusion process. Each nickel alloy coupon featured a single row of engine scale cooling holes, fed by a micro-channel. To evaluate performance, the overall cooling effectiveness of each coupon was measured using a matched Biot test at engine relevant conditions. The results showed that certain hole shapes are better suited for additive manufacturing than others, and that the manufacturing process can cause significant deviations from the performance reported in literature.
UR - http://www.scopus.com/inward/record.url?scp=85075533418&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075533418&partnerID=8YFLogxK
U2 - 10.1115/GT2019-90877
DO - 10.1115/GT2019-90877
M3 - Conference contribution
AN - SCOPUS:85075533418
T3 - Proceedings of the ASME Turbo Expo
BT - Heat Transfer
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Y2 - 17 June 2019 through 21 June 2019
ER -