Permutation polynomials

Gary L. Mullen, Qiang Wang

Research output: Chapter in Book/Report/Conference proceedingChapter

17 Scopus citations

Abstract

For odd q, f(x) = x(q+1)/2 + ax is a PP of Fq if and only if a2- 1 is a nonzero square in Fq. Moreover, the polynomial f(x) + cx is a PP of Fq for (q - 3)/2 values of c ? Fq [1939]. The polynomial xr(f(xd))(q-1)/d is a PP of Fq if (r, q - 1) = 1, d q - 1, and f(xd) has no nonzero root in Fq.

Original languageEnglish (US)
Title of host publicationHandbook of Finite Fields
PublisherCRC Press
Pages215-240
Number of pages26
ISBN (Electronic)9781439873823
ISBN (Print)9781439873786
DOIs
StatePublished - Jan 1 2013

All Science Journal Classification (ASJC) codes

  • General Computer Science
  • General Mathematics

Fingerprint

Dive into the research topics of 'Permutation polynomials'. Together they form a unique fingerprint.

Cite this