TY - JOUR
T1 - Persistence and surface transport of urea-nitrogen
T2 - A rainfall simulation study
AU - Kibet, Leonard C.
AU - Bryant, Ray B.
AU - Buda, Anthony R.
AU - Kleinman, Peter J.A.
AU - Saporito, Louis S.
AU - Allen, Arthur L.
AU - Hashem, Fawzy M.
AU - May, Eric B.
N1 - Publisher Copyright:
© American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. 5585 Guilford Rd., Madison, WI 53711 USA.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Studies of harmful algal blooms and associated urea concentrations in the Chesapeake Bay and in coastal areas around the globe strongly suggest that elevated urea concentrations are associated with harmful algal blooms. The observed increased frequency and toxicity of these blooms in recent decades has been correlated with increased agricultural use of N inputs and increased use of urea as a preferred form of commercial N. This rainfall simulation study sought to assess the potential for different N fertilizers and manures to contribute to urea in runoff from a Coastal Plain soil on the Eastern Shore of Maryland. Under worst-case conditions, ?1% of urea-N applied as commercial fertilizer and surface-applied poultry litter was lost in runoff in a simulated rainfall event, roughly equivalent to a 1-yr return period rain storm in the study area, 12 h after application. Cumulative urea-N losses, including four subsequent weekly rainfall events, approached 1.7% from urea-N fertilizer containing a urease inhibitor. Urea-N loss from incorporated poultry litter was negligible, and losses from dairy manure were intermediate. These losses are likely confined to hydrological contributing areas that extend several meters from a drainage ditch or stream for storms with frequent recurrence intervals. Cumulative dissolved N losses in runoff (urea-N + ammonium-N + nitrate-N) as a proportion of total applied plant-available N were <5%, suggesting that most of the applied N was lost by other pathways or was immobilized in soil. Results also highlight the potential for simple management options, such as shallow incorporation or timing, to greatly reduce urea runoff losses.
AB - Studies of harmful algal blooms and associated urea concentrations in the Chesapeake Bay and in coastal areas around the globe strongly suggest that elevated urea concentrations are associated with harmful algal blooms. The observed increased frequency and toxicity of these blooms in recent decades has been correlated with increased agricultural use of N inputs and increased use of urea as a preferred form of commercial N. This rainfall simulation study sought to assess the potential for different N fertilizers and manures to contribute to urea in runoff from a Coastal Plain soil on the Eastern Shore of Maryland. Under worst-case conditions, ?1% of urea-N applied as commercial fertilizer and surface-applied poultry litter was lost in runoff in a simulated rainfall event, roughly equivalent to a 1-yr return period rain storm in the study area, 12 h after application. Cumulative urea-N losses, including four subsequent weekly rainfall events, approached 1.7% from urea-N fertilizer containing a urease inhibitor. Urea-N loss from incorporated poultry litter was negligible, and losses from dairy manure were intermediate. These losses are likely confined to hydrological contributing areas that extend several meters from a drainage ditch or stream for storms with frequent recurrence intervals. Cumulative dissolved N losses in runoff (urea-N + ammonium-N + nitrate-N) as a proportion of total applied plant-available N were <5%, suggesting that most of the applied N was lost by other pathways or was immobilized in soil. Results also highlight the potential for simple management options, such as shallow incorporation or timing, to greatly reduce urea runoff losses.
UR - http://www.scopus.com/inward/record.url?scp=84969756496&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84969756496&partnerID=8YFLogxK
U2 - 10.2134/jeq2015.09.0495
DO - 10.2134/jeq2015.09.0495
M3 - Article
C2 - 27136175
AN - SCOPUS:84969756496
SN - 0047-2425
VL - 45
SP - 1062
EP - 1070
JO - Journal of Environmental Quality
JF - Journal of Environmental Quality
IS - 3
ER -