Persistent optical gating of a topological insulator

Andrew L. Yeats, Yu Pan, Anthony Richardella, Peter J. Mintun, Nitin Samarth, David D. Awschalom

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


The spin-polarized surface states of topological insulators (TIs) are attractive for applications in spintronics and quantum computing. A central challenge with these materials is to reliably tune the chemical potential of their electrons with respect to the Dirac point and the bulk bands. We demonstrate persistent, bidirectional optical control of the chemical potential of (Bi,Sb)2Te3 thin films grown on SrTiO3. By optically modulating a space-charge layer in the SrTiO3 substrates, we induce a persistent field effect in the TI films comparable to electrostatic gating techniques but without additional materials or processing. This enables us to optically pattern arbitrarily shaped p-and n-type regions in a TI, which we subsequently image with scanning photocurrent microscopy. The ability to optically write and erase mesoscopic electronic structures in a TI may aid in the investigation of the unique properties of the topological insulating phase. The gating effect also generalizes to other thin-film materials, suggesting that these phenomena could provide optical control of chemical potential in a wide range of ultrathin electronic systems.

Original languageEnglish (US)
Article number1500640
JournalScience Advances
Issue number9
StatePublished - Oct 2015

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Persistent optical gating of a topological insulator'. Together they form a unique fingerprint.

Cite this