TY - JOUR
T1 - Persistent redistribution of poly-adenylated mRNAs correlates with translation arrest and cell death following global brain ischemia and reperfusion
AU - Jamison, J. T.
AU - Kayali, F.
AU - Rudolph, J.
AU - Marshall, M.
AU - Kimball, S. R.
AU - DeGracia, D. J.
N1 - Funding Information:
We would like to thank Dr. Robert Skoff (Department of Anatomy and Cell Biology, WSU) for his invaluable advice on performing FISH. We also thank Manupreet Chawla for her technical assistance with this work. We thank Jie Wang for her assistance with the 2VO/HT model. This work was sponsored by NIH NINDS grant No. NS057167 (D.J.D.) and NIH IMSD grant No. GM58905-8 (J.R.).
PY - 2008/6/23
Y1 - 2008/6/23
N2 - Although persistent translation arrest correlates with the selective vulnerability of post-ischemic hippocampal cornu ammonis 1 (Ammon's horn) (CA1) neurons, the mechanism of persistent translation arrest is not fully understood. Using fluorescent in situ hybridization and immunofluorescence histochemistry, we studied colocalization of polyadenylated mRNAs [poly(A)] with the following mRNA binding factors: eukaryotic initiation factor (eIF) 4G (translation initiation factor), HuR (ARE-containing mRNA stabilizing protein), poly-adenylated mRNA binding protein (PABP), S6 (small ribosomal subunit marker), T cell internal antigen (TIA-1) (stress granule marker), and tristetraprolin (TTP) (processing body marker). We compared staining in vulnerable CA1 and resistant CA3 from 1 to 48 h reperfusion, following 10 min global ischemia in the rat. In both CA1 and CA3 neurons, cytoplasmic poly(A) mRNAs redistributed from a homogenous staining pattern seen in controls to granular structures we term mRNA granules. The mRNA granules abated after 16 h reperfusion in CA3, but persisted in CA1 neurons to 48 h reperfusion. Protein synthesis inhibition correlated precisely with the presence of the mRNA granules. In both CA1 and CA3, the mRNA granules colocalized with eIF4G and PABP, but not S6, TIA-1 or TTP, indicating that they were neither stress granules nor processing bodies. Colocalization of HuR in the mRNA granules correlated with translation of 70 kDa inducible heat shock protein, which occurred early in CA3 (8 h) and was delayed in CA1 (36 h). Thus, differential compartmentalization of mRNA away from the 40S subunit correlated with translation arrest in post-ischemic neurons, providing a concise mechanism of persistent translation arrest in post-ischemic CA1.
AB - Although persistent translation arrest correlates with the selective vulnerability of post-ischemic hippocampal cornu ammonis 1 (Ammon's horn) (CA1) neurons, the mechanism of persistent translation arrest is not fully understood. Using fluorescent in situ hybridization and immunofluorescence histochemistry, we studied colocalization of polyadenylated mRNAs [poly(A)] with the following mRNA binding factors: eukaryotic initiation factor (eIF) 4G (translation initiation factor), HuR (ARE-containing mRNA stabilizing protein), poly-adenylated mRNA binding protein (PABP), S6 (small ribosomal subunit marker), T cell internal antigen (TIA-1) (stress granule marker), and tristetraprolin (TTP) (processing body marker). We compared staining in vulnerable CA1 and resistant CA3 from 1 to 48 h reperfusion, following 10 min global ischemia in the rat. In both CA1 and CA3 neurons, cytoplasmic poly(A) mRNAs redistributed from a homogenous staining pattern seen in controls to granular structures we term mRNA granules. The mRNA granules abated after 16 h reperfusion in CA3, but persisted in CA1 neurons to 48 h reperfusion. Protein synthesis inhibition correlated precisely with the presence of the mRNA granules. In both CA1 and CA3, the mRNA granules colocalized with eIF4G and PABP, but not S6, TIA-1 or TTP, indicating that they were neither stress granules nor processing bodies. Colocalization of HuR in the mRNA granules correlated with translation of 70 kDa inducible heat shock protein, which occurred early in CA3 (8 h) and was delayed in CA1 (36 h). Thus, differential compartmentalization of mRNA away from the 40S subunit correlated with translation arrest in post-ischemic neurons, providing a concise mechanism of persistent translation arrest in post-ischemic CA1.
UR - http://www.scopus.com/inward/record.url?scp=46549088858&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=46549088858&partnerID=8YFLogxK
U2 - 10.1016/j.neuroscience.2008.03.057
DO - 10.1016/j.neuroscience.2008.03.057
M3 - Article
C2 - 18456413
AN - SCOPUS:46549088858
SN - 0306-4522
VL - 154
SP - 504
EP - 520
JO - Neuroscience
JF - Neuroscience
IS - 2
ER -