Personalized disease prediction using a CNN-based similarity learning method

Qiuling Suo, Fenglong Ma, Ye Yuan, Mengdi Huai, Weida Zhong, Aidong Zhang, Jing Gao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

82 Scopus citations

Abstract

Predicting patients' risk of developing certain diseases is an important research topic in healthcare. Personalized predictive modeling, which focuses on building specific models for individual patients, has shown its advantages on utilizing heterogeneous health data compared to global models trained on the entire population. Personalized predictive models use information from similar patient cohorts, in order to capture the specific characteristics. Accurately identifying and ranking the similarity among patients based on their historical records is a key step in personalized modeling. The electric health records (EHRs), which are irregular sampled and have varied patient visit lengths, cannot be directly used to measure patient similarity due to lack of an appropriate vector representation. In this paper, we build a novel time fusion CNN framework to simultaneously learn patient representations and measure pairwise similarity. Compared to a traditional CNN, our time fusion CNN can learn not only the local temporal relationships but also the contributions from each time interval. Along with the similarity learning process, the output information which is the probability distribution is used to rank similar patients. Utilizing the similarity scores, we perform personalized disease predictions, and compare the effect of different vector representations and similarity learning metrics.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
EditorsIllhoi Yoo, Jane Huiru Zheng, Yang Gong, Xiaohua Tony Hu, Chi-Ren Shyu, Yana Bromberg, Jean Gao, Dmitry Korkin
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages811-816
Number of pages6
ISBN (Electronic)9781509030491
DOIs
StatePublished - Dec 15 2017
Event2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017 - Kansas City, United States
Duration: Nov 13 2017Nov 16 2017

Publication series

NameProceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
Volume2017-January

Other

Other2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
Country/TerritoryUnited States
CityKansas City
Period11/13/1711/16/17

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'Personalized disease prediction using a CNN-based similarity learning method'. Together they form a unique fingerprint.

Cite this