Personalized web search with location preferences

Kenneth Wai Ting Leung, Dik Lun Lee, Wang Chien Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

56 Scopus citations

Abstract

As the amount of Web information grows rapidly, search engines must be able to retrieve information according to the user's preference. In this paper, we propose a new web search personalization approach that captures the user's interests and preferences in the form of concepts by mining search results and their clickthroughs. Due to the important role location information plays in mobile search, we separate concepts into content concepts and location concepts, and organize them into ontologies to create an ontology-based, multi-facet (OMF) profile to precisely capture the user's content and location interests and hence improve the search accuracy. Moreover, recognizing the fact that different users and queries may have different emphases on content and location information, we introduce the notion of content and location entropies to measure the amount of content and location information associated with a query, and click content and location entropies to measure how much the user is interested in the content and location information in the results. Accordingly, we propose to define personalization effectiveness based on the entropies and use it to balance the weights between the content and location facets. Finally, based on the derived ontologies and personalization effectiveness, we train an SVM to adapt a personalized ranking function for re-ranking of future search. We conduct extensive experiments to compare the precision produced by our OMF profiles and that of a baseline method. Experimental results show that OMF improves the precision significantly compared to the baseline.

Original languageEnglish (US)
Title of host publication26th IEEE International Conference on Data Engineering, ICDE 2010 - Conference Proceedings
Pages701-712
Number of pages12
DOIs
StatePublished - 2010
Event26th IEEE International Conference on Data Engineering, ICDE 2010 - Long Beach, CA, United States
Duration: Mar 1 2010Mar 6 2010

Publication series

NameProceedings - International Conference on Data Engineering
ISSN (Print)1084-4627

Other

Other26th IEEE International Conference on Data Engineering, ICDE 2010
Country/TerritoryUnited States
CityLong Beach, CA
Period3/1/103/6/10

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Information Systems

Fingerprint

Dive into the research topics of 'Personalized web search with location preferences'. Together they form a unique fingerprint.

Cite this