Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls

Pubudu P. Handakumbura, Dominick A. Matos, Karen S. Osmont, Michael J. Harrington, Kyuyoung Heo, Kabindra Kafle, Seong H. Kim, Tobias I. Baskin, Samuel P. Hazen

Research output: Contribution to journalArticlepeer-review

59 Scopus citations

Abstract

Background: Cellulose is an integral component of the plant cell wall and accounts for approximately forty percent of total plant biomass but understanding its mechanism of synthesis remains elusive. CELLULOSE SYNTHASE A (CESA) proteins function as catalytic subunits of a rosette-shaped complex that synthesizes cellulose at the plasma membrane. Arabidopsis thaliana and rice (Oryza sativa) secondary wall CESA loss-of-function mutants have weak stems and irregular or thin cell walls.Results: Here, we identify candidates for secondary wall CESAs in Brachypodium distachyon as having similar amino acid sequence and expression to those characterized in A. thaliana, namely CESA4/7/8. To functionally characterize BdCESA4 and BdCESA7, we generated loss-of-function mutants using artificial microRNA constructs, specifically targeting each gene driven by a maize (Zea mays) ubiquitin promoter. Presence of the transgenes reduced BdCESA4 and BdCESA7 transcript abundance, as well as stem area, cell wall thickness of xylem and fibers, and the amount of crystalline cellulose in the cell wall.Conclusion: These results suggest BdCESA4 and BdCESA7 play a key role in B. distachyon secondary cell wall biosynthesis.

Original languageEnglish (US)
Article number131
JournalBMC plant biology
Volume13
Issue number1
DOIs
StatePublished - Sep 11 2013

All Science Journal Classification (ASJC) codes

  • Plant Science

Fingerprint

Dive into the research topics of 'Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls'. Together they form a unique fingerprint.

Cite this