@inproceedings{fefb3c3a922b45d6bc859e619fb45b56,
title = "Phase-change Materials in Multifunctional Reconfigurable Metasurfaces",
abstract = "Metasurfaces, 2D periodic subwavelength electromagnetic resonant structures, enable diverse optical responses in ultrathin geometries. By integrating phase-change materials (PCMs) with optically or thermally tunable material properties into the unit cell geometries, multiple functionalities can be achieved in a single reconfigurable device. However, the extra degrees of freedom offered by PCMs also presents a difficulty, especially since each state of the PCM requires a unique combination of multiple resonances to achieve a desired functionality. To this end, multi-objective optimization algorithms offer the possibility to directly inverse design reconfigurable devices by enabling multiple functionalities to be simultaneously optimized. These devices usually consist of counterintuitively complicated structures that provide novel resonance mechanisms.",
author = "Yuhao Wu and Campbell, {Sawyer D.} and Whiting, {Eric B.} and Lei Kang and Werner, {Pingjuan L.} and Werner, {Douglas H.}",
note = "Publisher Copyright: {\textcopyright} 2020 IEEE.; 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 ; Conference date: 05-07-2020 Through 10-07-2020",
year = "2020",
month = jul,
day = "5",
doi = "10.1109/IEEECONF35879.2020.9329713",
language = "English (US)",
series = "2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "819--820",
booktitle = "2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Proceedings",
address = "United States",
}