Abstract
A scheelite based structure that could host the solid solution (Na 0.5xBi1-0.5x)(MoxV1-x)O4 (0.0 ≤ x ≤ 1.0) was prepared via the solid state reaction method. All the compositions can be sintered well below a temperature of 800 °C. A structural phase transition occurs from the monoclinic scheelite structure to a tetragonal scheelite structure at x = 0.10 at room temperature. This structural transition is related to a displacive ferroelastic-paraelastic phase transition. This phase transition was also confirmed by in situ high temperature XRD and Raman studies, and a room temperature infrared spectra study. The compositions near the phase boundary possessed high dielectric permittivities (>70), and large Qf values (>80000 GHz) with variable temperature coefficients of frequency and capacitance. For example, a temperature stable dielectric made as a composite with compositions of x = 0.05 and x = 0.10 was designed and co-sintered at 720 °C for 2 h to produce a dielectric with a permittivity of ∼77.3, a Qf value between 8000 GHz-10000 GHz, and a temperature coefficient of <±20 ppm/°C at 3.8 GHz over a temperature range of 25-110 °C. This material is a candidate for dielectric resonators and low temperature co-fired ceramics technologies. Near the phase boundary at x = 0.10 in the monoclinic phase region, the samples show strong absorption in the visible light region and we determine a band gap energy of about 2.1 eV, which means that it might also be useful as a visible light irradiation photocatalyst.
Original language | English (US) |
---|---|
Pages (from-to) | 18412-18420 |
Number of pages | 9 |
Journal | Journal of Materials Chemistry |
Volume | 21 |
Issue number | 45 |
DOIs | |
State | Published - Dec 7 2011 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Materials Chemistry