Phenomena affecting catalytic reactions at solid−Liquid interfaces

Carsten Sievers, Susannah L. Scott, Yu Noda, Long Qi, Elise M. Albuquerque, Robert M. Rioux

Research output: Contribution to journalArticlepeer-review

169 Scopus citations


Interest in liquid-phase reactions over heterogeneous catalysts is growing rapidly, partially because of the desire to find efficient methods for biomass conversion to renewable fuels and chemicals. The presence of a solvent can affect reactions at surfaces by competing with reactants and products for adsorption sites and solvating adsorbed species. Mass transport limitations can also have a pronounced effect on liquid-phase reaction rates. Because many heterogeneous catalysts were designed to be stable under gas-phase reaction conditions, their operation in liquid reaction media at moderately elevated temperatures can result in unexpected structural changes. In some cases, components derived from the evolving catalyst contribute significantly to the catalytic activity. Solvents, as well as byproducts from biomass feedstocks, can also act as homogeneous catalysts to alter the intrinsic reactivity of the heterogeneous catalyst. In this contribution, we discuss each of these phenomena and provide illustrative examples.

Original languageEnglish (US)
Pages (from-to)8286-8307
Number of pages22
JournalACS Catalysis
Issue number12
StatePublished - Dec 2 2016

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)


Dive into the research topics of 'Phenomena affecting catalytic reactions at solid−Liquid interfaces'. Together they form a unique fingerprint.

Cite this